scholarly journals Starmerella aceti f.a., sp. nov., an ascomycetous yeast species isolated from fungus garden of the leafcutter ant Acromyrmex balzani

2014 ◽  
Vol 64 (Pt_4) ◽  
pp. 1428-1433 ◽  
Author(s):  
Weilan G. P. Melo ◽  
Silvio L. Arcuri ◽  
Andre Rodrigues ◽  
Paula B. Morais ◽  
Lucas A. Meirelles ◽  
...  

A novel yeast species was recovered from the fungus garden of the leaf-cutting ant Acromyrmex balzani (Hymenoptera: Formicidae). The growth of the novel yeast species is limited by its ability to metabolize only a few carbon and nitrogenous compounds. A remarkable characteristic of this strain is the vigorous growth in 1 % acetic acid. Sequence analysis of the D1/D2 domains of the LSU rRNA gene showed that the novel species belongs to the Starmerella clade and is phenotypically and genetically divergent from currently recognized species in this clade. Described here as Starmerella aceti f.a., sp. nov., it differs by 37 nucleotide substitutions in the D1/D2 region from Starmerella jinningensis CBS 11864T, the most closely related species. The type strain of Starmerella aceti sp. nov. is TO 125T ( = CBMAI 1594T = CBS 13086T).

2020 ◽  
Vol 70 (12) ◽  
pp. 6307-6312
Author(s):  
João Drumonde-Neves ◽  
Neža Čadež ◽  
Yazmid Reyes-Domínguez ◽  
Andreas Gallmetzer ◽  
Dorit Schuller# ◽  
...  

During a study of yeast diversity in Azorean vineyards, four strains were isolated which were found to represent a novel yeast species based on the sequences of the internal transcribed spacer (ITS) region (ITS1-5.8S–ITS2) and of the D1/D2 domain of the large subunit (LSU) rRNA gene, together with their physiological characteristics. An additional strain isolated from Drosophila suzukii in Italy had identical D1/D2 sequences and very similar ITS regions (five nucleotide substitutions) to the Azorean strains. Phylogenetic analysis using sequences of the ITS region and D1/D2 domain showed that the five strains are closely related to Clavispora lusitaniae, although with 56 nucleotide differences in the D2 domain. Intraspecies variation revealed between two and five nucleotide differences, considering the five strains of Clavispora santaluciae. Some phenotypic discrepancies support the separation of the new species from their closely related ones, such as the inability to grow at temperatures above 35 °C, to produce acetic acid and the capacity to assimilate starch. Neither conjugations nor ascospore formation were observed in any of the strains. The name Clavispora santaluciae f.a., sp. nov., is proposed to accommodate the above noted five strains (holotype, CBS 16465T; MycoBank no., MB 835794).


2014 ◽  
Vol 64 (Pt_8) ◽  
pp. 2915-2918 ◽  
Author(s):  
Francisca M. P. Sousa ◽  
Paula B. Morais ◽  
Marc-André Lachance ◽  
Carlos A. Rosa

Three strains of a novel yeast species were isolated from water tanks (phytotelmata) of a bromeliad species collected in the state of Tocantins, Brazil. Analysis of sequences for the region spanning the SSU rRNA gene, the internal transcribed spacer, the 5.8S rRNA gene and the D1/D2 domains of the LSU rRNA gene and RNA polymerase II gene showed that these novel yeasts belong to a species that is distinct from all recognized ascomycetous yeast species. Based on the results of gene sequence analyses, a novel species representing a new genus in the Saccharomycetaceae is proposed. The novel species is assigned to the genus Hagleromyces gen. nov. The three isolates of the novel yeast species failed to form sexual spores alone or in mixtures. The name Hagleromyces aurorensis sp. nov. is proposed to accommodate these isolates. The type strain of H. aurorensis sp. nov. is UFMG-CM-Y311T ( = CBS 13264T).


2015 ◽  
Vol 65 (Pt_4) ◽  
pp. 1304-1309 ◽  
Author(s):  
Stephen A. James ◽  
Enrique Javier Carvajal Barriga ◽  
Patricia Portero Barahona ◽  
Carmen Nueno-Palop ◽  
Kathryn Cross ◽  
...  

Seven strains representing a novel yeast species belonging to the genus Kazachstania were found at several collection sites on both mainland Ecuador (Yasuní National Park) and the Galápagos (Santa Cruz Island). Two strains (CLQCA 20-132T and CLQCA 24SC-045) were isolated from rotten wood samples, two further strains (CLQCA 20-280 and CLQCA 20-348) were isolated from soil samples, and three strains (CLQCA 20-198, CLQCA 20-374 and CLQCA 20-431) were isolated from decaying fruits. Sequence analyses of the D1/D2 domains of the LSU rRNA gene and ribosomal internal transcribed spacer (ITS) region indicated that the novel species is most closely related to Kazachstania servazzii and Kazachstania unispora. Although the strains could not be distinguished from one another based upon their differing geographical origins, they could be differentiated according to their isolation source (fruit, soil or wood) by ITS sequencing. The species name Kazachstania yasuniensis sp. nov. is proposed to accommodate these strains, with CLQCA 20-132T ( = CBS 13946T = NCYC 4008T) designated the type strain.


2014 ◽  
Vol 64 (Pt_11) ◽  
pp. 3849-3855 ◽  
Author(s):  
Pannida Khunnamwong ◽  
Janjira Surussawadee ◽  
Sasitorn Jindamorakot ◽  
Savitree Limtong

Six strains representing a novel yeast species were isolated from tissue (DMKU-SE106T, DMKU-SE110, DMKU-SE112 and DMKU-SE132) and the external surface (DMKU-SP335 and DMKU-SP406) of sugar cane leaves collected in Thailand. On the basis of morphological, biochemical, physiological and chemotaxonomic characteristics, and sequence analysis of the D1/D2 region of the LSU rRNA gene and the internal transcribed spacer (ITS) region, the six strains were found to represent a single novel species of the genus Wickerhamiella although the formation of ascospores was not observed. The sequences of the D1/D2 region of the LSU rRNA gene and ITS region of the six strains differed from each other by 0–2 and 2–3 nt substitutions, respectively. The novel species was related most closely to Candida infanticola but with 4.5–4.6 % nucleotide substitutions in the D1/D2 region of the LSU rRNA gene and 6.6–7.1 % nucleotide substitutions in the ITS region. The name Wickerhamiella siamensis f.a., sp. nov. is proposed. The type strain is DMKU-SE106T ( = BCC 61185T = NBRC 109697T = CBS 13331T).


2014 ◽  
Vol 64 (Pt_1) ◽  
pp. 266-270 ◽  
Author(s):  
Rungluk Kaewwichian ◽  
Savitree Limtong

Strain DMKU-RK467T, representing a novel yeast species, was isolated from the external surface of sugar cane leaves collected in Thailand. On the basis of morphological, biochemical, physiological and chemotaxonomic characteristics, and sequence analysis of the D1/D2 region of the LSU rRNA gene and the internal transcribed spacer (ITS) region, strain DMKU-RK467T was assigned to a novel species of the genus Nakazawaea. The novel species was related most closely to the type strain of Candida wickerhamii but they differed by 1.9 % nucleotide substitutions in the D1/D2 region of the LSU rRNA gene and by 5.2 % nucleotide substitutions in the ITS region. The name Nakazawaea siamensis f.a., sp. nov. is proposed (type strain DMKU-RK467T = BCC 50734T = NBRC 108903T = CBS 12569T).


2013 ◽  
Vol 63 (Pt_4) ◽  
pp. 1568-1573 ◽  
Author(s):  
Rungluk Kaewwichian ◽  
Hiroko Kawasaki ◽  
Savitree Limtong

Strain DMKU-RK359T, representing a novel yeast species, was isolated from the external surface of a sugar-cane leaf collected in Thailand. On the basis of morphological, biochemical, physiological and chemotaxonomic characteristics, sequence analysis of the D1/D2 region of the large-subunit (LSU) rRNA gene and the internal transcribed spacer (ITS) region, strain DMKU-RK359T was assigned to a novel Wickerhamomyces species. The novel species was closest to Wickerhamomyces ciferrii, but differed from it by 0.7 % nucleotide substitutions in the D1/D2 region of the LSU rRNA gene and 6 % nucleotide substitutions in the ITS region. The name Wickerhamomyces siamensis sp. nov. is proposed (type strain DMKU-RK359T  = BCC 50732T  = NBRC 108900T  = CBS 12570T).


2004 ◽  
Vol 54 (5) ◽  
pp. 1891-1894 ◽  
Author(s):  
Solange C. Carreiro ◽  
Fernando C. Pagnocca ◽  
Maurício Bacci ◽  
Marc-André Lachance ◽  
Odair C. Bueno ◽  
...  

Four strains of a novel yeast species were isolated from laboratory nests of the leaf-cutting ant Atta sexdens in Brazil. Three strains were found in older sponges and one was in a waste deposit in the ant nests. Sequencing of the D1/D2 region of the large-subunit rRNA gene showed that the novel species, named Sympodiomyces attinorum sp. nov., is phylogenetically related to Sympodiomyces parvus. Unlike Sympodiomyces parvus, Sympodiomyces attinorum can ferment glucose, assimilate methyl α-d-glucoside, salicin and citrate, and grow at 37 °C, thus enabling these two species to be distinguished. Differentiation from other related species is possible on the basis of other growth characteristics. The type strain of Sympodiomyces attinorum is UNESP-S156T (=CBS 9734T=NRRL Y-27639T).


2020 ◽  
Vol 70 (11) ◽  
pp. 5665-5670
Author(s):  
Varunya Sakpuntoon ◽  
Jirameth Angchuan ◽  
Chanita Boonmak ◽  
Pannida Khunnamwong ◽  
Noémie Jacques ◽  
...  

Two strains (DMKU-GTCP10-8 and CLIB 1740) representing a novel anamorphic yeast species were isolated from a grease sample collected from a grease trap in Thailand and from an unidentified fungus collected in French Guiana, respectively. On the basis of phylogenetic analysis based on the combined D1/D2 domain of the large subunit (LSU) rRNA gene and the internal transcribed spacer (ITS) region, Lachancea fermentati CBS 707T was the closely related species with 12.8 % sequence divergence (70 nucleotide substitutions and three gaps in 571 nucleotides) and 28.1 % sequence divergence (93 nucleotide substitutions and 90 gaps in 651 nucleotides) in the D1/D2 domain of the LSU rRNA gene and the ITS region, respectively. Phylogenetic analysis based on the concatenated sequences of the five genes including the small subunit rRNA gene, the D1/D2 domain of the LSU rRNA gene, the ITS region, translation elongation factor-1 alpha (TEF1) and RNA polymerase II subunit 2 (RPB2) genes confirmed that the two strains (DMKU-GTCP10-8 and CLIB 1740) were well-separated from other described yeast genera in Saccharomycetaceae. Hence, Savitreea pentosicarens gen. nov., sp. nov. is proposed to accommodate these two strains as members of the family Saccharomycetaceae. The holotype is S. pentosicarens DMKU-GTCP10-8T (ex-type strain TBRC 12159=PYCC 8490; MycoBank number 835044).


2013 ◽  
Vol 63 (Pt_1) ◽  
pp. 393-397 ◽  
Author(s):  
Stephen A. James ◽  
Enrique Javier Carvajal Barriga ◽  
Patricia Portero Barahona ◽  
Kathryn Cross ◽  
Christopher J. Bond ◽  
...  

In the course of an on-going study aimed at cataloguing the natural yeast biodiversity found in Ecuador, two strains (CLQCA 13-025 and CLQCA 20-004T) were isolated from samples of cow manure and rotten wood collected in two separate provinces of the country (Orellana and Bolívar). These strains were found to represent a novel yeast species based on the sequences of their D1/D2 domain of the large-subunit (LSU) rRNA gene and their physiological characteristics. Phylogenetic analysis based on LSU D1/D2 sequences revealed this novel species to belong to the Metschnikowia clade and to be most closely related to Candida suratensis, a species recently discovered in a mangrove forest in Thailand. The species name of Candida ecuadorensis sp. nov. is proposed to accommodate these strains, with strain CLQCA 20-004T ( = CBS 12653T = NCYC 3782T) designated as the type strain.


2014 ◽  
Vol 64 (Pt_11) ◽  
pp. 3856-3861 ◽  
Author(s):  
Yong-Cheng Ren ◽  
Yun Wang ◽  
Liang Chen ◽  
Tao Ke ◽  
Feng-Li Hui

Two strains representing Wickerhamiella allomyrinae f.a., sp. nov. were isolated from the gut of Allomyrina dichotoma (Coleoptera: Scarabeidae) collected from the Baotianman National Nature Reserve, Nanyan, Henan Province, China. Sequence analyses of the D1/D2 domains of the LSU rRNA gene revealed that this novel species was located in the Wickerhamiella clade (Saccharomycetes, Saccharomycetales), with three described species of the genus Candida, namely Candida musiphila, Candida spandovensis and Candida sergipensis, as the most closely related species. The novel species differed from these three species by 9.3–9.8 % sequence divergence (35–45 nt substitutions) in the D1/D2 sequences. The species could also be distinguished from the closely related species, C. musiphila, C. spandovensis and C. sergipensis, by growth on vitamin-free medium and at 37 °C. The type strain is Wickerhamiella allomyrinae sp. nov. NYNU 13920T ( = CICC 33031T = CBS 13167T).


Sign in / Sign up

Export Citation Format

Share Document