scholarly journals Brevibacterium picturae sp. nov., isolated from a damaged mural painting at the Saint-Catherine chapel (Castle Herberstein, Austria)

2004 ◽  
Vol 54 (5) ◽  
pp. 1537-1541 ◽  
Author(s):  
Jeroen Heyrman ◽  
Jens Verbeeren ◽  
Peter Schumann ◽  
Joke Devos ◽  
Jean Swings ◽  
...  

Three strains showing highly similar (GTG)5-PCR patterns were isolated from a heavily damaged mural painting at the Saint-Catherine chapel (Castle Herberstein, Austria). On the basis of 16S rRNA gene sequence similarity, the strains were attributed to Brevibacterium, with Brevibacterium casei (96·7 %), Brevibacterium iodinum (96·7 %) and Brevibacterium linens (96·6 %) as the closest related species. Chemotaxonomic data [peptidoglycan contains meso-diaminopimelic acid; mycolic acids absent; MK-8(H2) as the major menaquinone; polar lipids phosphatidylglycerol and diphosphatidylglycerol present; anteiso-C15 : 0 and anteiso-C17 : 0 as major fatty acids] supported the affiliation of the strains to the genus Brevibacterium. Additional physiological and biochemical tests confirmed the taxonomic position of the strains and allowed phenotypic differentiation from Brevibacterium species with validly published names. The isolates from the mural painting, therefore, represent a novel species, for which the name Brevibacterium picturae sp. nov. is proposed, with LMG 22061T (=DSM 16132T) as the type strain.

2007 ◽  
Vol 57 (4) ◽  
pp. 713-716 ◽  
Author(s):  
Ying-Shun Cui ◽  
Wan-Taek Im ◽  
Cheng-Ri Yin ◽  
Deok-Chun Yang ◽  
Sung-Taik Lee

A Gram-positive, aerobic, coccus-shaped, non-endospore-forming bacterium (Gsoil 633T) was isolated from soil from a ginseng field in Pocheon province in South Korea. The novel isolate was characterized in order to determine its taxonomic position. On the basis of 16S rRNA gene sequence similarities, strain Gsoil 633T was shown to belong to the family Propionibacteriaceae. The closest phylogenetic relative was Microlunatus phosphovorus DSM 19555T, with 96.1 % sequence similarity; the sequence similarity to other members of the family was less than 95.4 %. The isolate was characterized chemotaxonomically as having ll-2,6-diaminopimelic acid in the cell-wall peptidoglycan, MK-9(H4) as the predominant menaquinone and anteiso-C15 : 0, iso-C15 : 0 and iso-C16 : 0 as the major fatty acids. The G+C content of the genomic DNA was 69.8 mol%. The morphological and chemotaxonomic properties of the isolate were consistent with those of M. phosphovorus, but the results of physiological and biochemical tests allowed the phenotypic differentiation of strain Gsoil 633T from this species. Therefore, strain Gsoil 633T represents a novel species, for which the name Microlunatus ginsengisoli sp. nov. is proposed. The type strain is Gsoil 633T (=KCTC 13940T=DSM 17942T).


2005 ◽  
Vol 55 (5) ◽  
pp. 1997-2000 ◽  
Author(s):  
Bram Vanparys ◽  
Kim Heylen ◽  
Liesbeth Lebbe ◽  
Paul De Vos

A Gram-negative, rod-shaped, non-spore-forming bacteria was isolated from a nitrifying inoculum. On the basis of 16S rRNA gene sequence similarity, this strain, designated LMG 22951T, was shown to belong to the ‘Alphaproteobacteria’ and to be related to Devosia neptuniae (97·4 %) and Devosia riboflavina (97·0 %). The results of DNA–DNA hybridization, analysis of fatty acid composition, SDS-PAGE, physiological and biochemical tests allowed genotypic and phenotypic differentiation of LMG 22951T from the two recognized Devosia species. LMG 22951T therefore represents a novel species within this genus, for which the name Devosia limi is proposed. The type strain is LMG 22951T (=DSM 17137T).


2007 ◽  
Vol 57 (11) ◽  
pp. 2618-2622 ◽  
Author(s):  
Elke Lang ◽  
Jolantha Swiderski ◽  
Erko Stackebrandt ◽  
P. Schumann ◽  
Cathrin Spröer ◽  
...  

A Gram-negative, rod-shaped, non-spore-forming bacterium (strain NS11T) was isolated from a lichen-colonized rock surface. On the basis of 16S rRNA gene sequence similarity, strain NS11T was shown to belong to the Betaproteobacteria, and was most closely related to Herminiimonas arsenicoxydans ULPAs1T (98.8 %), Herminiimonas aquatilis CCUG 36956T (98.0 %) and Herminiimonas fonticola S-94T (98.0 %). Major whole-cell fatty acids were C16 : 0, C17 : 0 cyclo and C16 : 1 ω7c. Strain NS11T also contained high proportions of C10 : 0 3-OH and C18 : 1 ω7c. This pattern is typical for members of the genus Herminiimonas. The results of DNA–DNA hybridization experiments and physiological and biochemical tests allowed genotypic and phenotypic differentiation of strain NS11T from the three recognized Herminiimonas species. It is therefore concluded that strain NS11T represents a novel species of the genus Herminiimonas, for which the name Herminiimonas saxobsidens sp. nov. is proposed. The type strain is NS11T (=DSM 18748T=CCM 7436T).


2010 ◽  
Vol 60 (9) ◽  
pp. 2129-2134 ◽  
Author(s):  
Andréia B. Estrela ◽  
Wolf-Rainer Abraham

A Gram-negative, rod-shaped, non-spore-forming bacterial strain, designated LMG 2337T, was isolated from the blood of a patient with endocarditis and characterized. The strain was affiliated with the alphaproteobacterial genus Brevundimonas, with Brevundimonas diminuta LMG 2089T (98.3 % 16S rRNA gene sequence similarity) and Brevundimonas terrae KSL-145T (97.5 %) as its closest relatives. This affiliation was supported by chemotaxonomic data: the G+C content was 66.3 mol %, the major polar lipids were phosphatidyl diacylglycerol, sulfoquinovosyl diacylglycerol and phosphatidyl glucopyranosyl diacylglycerol and the major fatty acids were summed feature 7 (one or more of C18 : 1 ω7c, C18 : 1 ω9t and C18 : 1 ω12t) and C16 : 0. Strain LMG 2337T displayed an unusually broad substrate spectrum. The results from DNA–DNA hybridization and physiological and biochemical tests allowed the genotypic and phenotypic differentiation of strain LMG 2337T from all of the type strains of hitherto-described Brevundimonas species. The strain therefore represents a novel species, for which the name Brevundimonas vancanneytii sp. nov. is proposed, with type strain LMG 2337T (=CCUG 1797T =ATCC 14736T).


2006 ◽  
Vol 56 (3) ◽  
pp. 605-608 ◽  
Author(s):  
Peter Kämpfer ◽  
Hans-Jürgen Busse ◽  
Enevold Falsen

Two Gram-negative, rod-shaped, non-spore-forming bacteria (CCUG 39402T and CCUG 39797), isolated from different water sources, were investigated in a polyphasic study. The two isolates shared 100 % 16S rRNA gene sequence similarity and it was shown that they belonged to the Betaproteobacteria, most closely related to Polaromonas vacuolata (97·8 %) and Polaromonas naphthalenivorans (97·8 %). A polyamine pattern with 2-hydroxyputrescine and putrescine, as well as ubiquinone Q-8, were in agreement with characteristics of Betaproteobacteria. The presence of diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine, and major fatty acids C16 : 1 ω7c, C16 : 0 and C17 : 0 cyclo supported the affiliation of the two strains to the genus Polaromonas. The results of DNA–DNA hybridization and physiological and biochemical tests allowed genotypic and phenotypic differentiation of the two isolates from the two Polaromonas species with validly published names. They therefore represent a novel species, for which the name Polaromonas aquatica sp. nov. is proposed, with the type strain CCUG 39402T (=CIP 108776T).


2007 ◽  
Vol 57 (8) ◽  
pp. 1762-1764 ◽  
Author(s):  
T. N. R. Srinivas ◽  
P. Anil Kumar ◽  
Ch. Sasikala ◽  
Ch. V. Ramana ◽  
J. F. Imhoff

A Gram-negative, rod-shaped, phototrophic bacterium (JA181T) was isolated from a tidal water sample. On the basis of 16S rRNA gene sequence similarity, strain JA181T was shown to belong to the class Alphaproteobacteria, most closely related to Rhodovulum sulfidophilum (97.8 % similarity to the type strain), Rhodovulum adriaticum (93 %), Rhodovulum robiginosum (93 %), Rhodovulum iodosum (94 %), Rhodovulum imhoffii (94 %), Rhodovulum strictum (95 %), Rhodovulum euryhalinum (94.6 %) and Rhodovulum marinum (94.6 %). DNA–DNA hybridization with Rdv. sulfidophilum DSM 1374T (relatedness of 39 % with strain JA181T) and physiological and biochemical tests allowed genotypic and phenotypic differentiation of strain JA181T from the eight Rhodovulum species with validly published names. Strain JA181T therefore represents a novel species, for which the name Rhodovulum visakhapatnamense sp. nov. is proposed (type strain JA181T =JCM 13531T =ATCC BAA-1274T =DSM 17937T).


2015 ◽  
Vol 65 (Pt_10) ◽  
pp. 3313-3319 ◽  
Author(s):  
Yuko Kato Tanaka ◽  
Nobuhiro Horie ◽  
Kaoru Mochida ◽  
Yoshihiro Yoshida ◽  
Eri Okugawa ◽  
...  

A Gram-negative, facultatively anaerobic strain was isolated from black tea. On the basis of 16S rRNA gene sequence similarity comparisons, strain QC88-366T was grouped into the genus Pantoea, being related most closely to the type strains of Pantoea gaviniae (98.5 %) and Pantoea calida (98.3 %); sequence similarities were ≤ 97.0 % to the type strains of other species of the genus Pantoea. Multilocus sequence analysis based on partial sequences of the gyrB, rpoB, infB and atpD genes also revealed P. gaviniae and P. calida as the closest phylogenetic relatives. The fatty acid profile showed the major fatty acids of strain QC88-366T were C16 : 0, C16 : 1 and C18 : 1, the same as those of its closest related species. However, the ratio of C16 : 1, C17 : 0 cyclo, C18 : 1 and C18 : 2 differed slightly compared with those of the related neighbours. In addition, the results of physiological and biochemical tests also allowed the phenotypic differentiation of strain QC88-366T from its closest phylogenetic neighbours. The G+C content of the DNA was 57.2 mol%. Strain QC88-366T therefore represents a novel species of the genus Pantoea, for which the name Pantoea theicola sp. nov. is proposed. The type strain is QC88-366T ( = DSM 29212T = NBRC 110557T).


2005 ◽  
Vol 55 (5) ◽  
pp. 2155-2158 ◽  
Author(s):  
Bhaskar Bhadra ◽  
Pradosh Roy ◽  
Ranadhir Chakraborty

A Gram-negative, rod-shaped, urea-dissolving and non-spore-forming bacterium, designated strain NiVa 51T, was isolated from water of the River Torsa in Hasimara, Jalpaiguri district, West Bengal, India. On the basis of 16S rRNA gene sequence similarity, strain NiVa 51T was shown to belong to the γ-Proteobacteria and to be related to Serratia marcescens subsp. sakuensis (98·35 %) and S. marcescens subsp. marcescens (98·30 %); however, strain NiVa 51T exhibited only 43·7 % similarity to S. marcescens by DNA–DNA hybridization. The G+C content of the genomic DNA of the isolate was 60 mol%. Both biochemical characteristics and fatty acid analysis data supported the affiliation of strain NiVa 51T to the genus Serratia. Furthermore, strain NiVa 51T was found to utilize urea as nitrogen source. The results of DNA–DNA hybridization as well as physiological and biochemical tests allowed genotypic and phenotypic differentiation of strain NiVa 51T from recognized Serratia species. Strain NiVa 51T therefore represents a novel species, for which the name Serratia ureilytica sp. nov. is proposed, with type strain NiVa 51T (=LMG 22860T=CCUG 50595T).


2006 ◽  
Vol 56 (2) ◽  
pp. 389-392 ◽  
Author(s):  
Peter Kämpfer ◽  
Olle Terenius ◽  
Jenny M. Lindh ◽  
Ingrid Faye

A Gram-positive, aerobic, non-motile strain, H2.16BT, isolated from the midgut of the mosquito Anopheles arabiensis was investigated using a polyphasic approach. On the basis of 16S rRNA gene sequence similarity studies, strain H2.16BT was shown to belong to the genus Janibacter, being most closely related to Janibacter melonis (98·3 %), Janibacter terrae (98·5 %) and Janibacter limosus (98·5 %). Chemotaxonomic data (meso-diaminopimelic acid as the diagnostic diamino acid in the cell wall and major fatty acids of iso-C16 : 0, C17 : 1 ω8c and C17 : 0) supported the allocation of the strain to the genus Janibacter. The results of DNA–DNA hybridization and physiological and biochemical tests allowed the genotypic and phenotypic differentiation of strain H2.16BT from closely related species. Thus, H2.16BT represents a novel species of the genus Janibacter, for which the name Janibacter anophelis sp. nov. is proposed. The type strain is H2.16BT (=CCUG 49715T=CIP 108728T).


2005 ◽  
Vol 55 (6) ◽  
pp. 2395-2399 ◽  
Author(s):  
Ida Romano ◽  
Licia Lama ◽  
Barbara Nicolaus ◽  
Agata Gambacorta ◽  
Assunta Giordano

A halo-alkaliphilic, Gram-positive, non-motile bacterium, designated strain 4AGT, was isolated from a mineral pool located in Malvizza, Campania, southern Italy. On the basis of 16S rRNA gene sequence analysis, strain 4AGT was shown to belong to the genus Alkalibacillus within the phylum Firmicutes; its phylogenetic distance from recognized Alkalibacillus species was <95·0 %. Chemotaxonomic data (MK-7 as the major menaquinone; directly cross-linked meso-diaminopimelic acid in the cell wall; phosphatidylglycerol and diphosphatidylglycerol as major polar lipids; iso-C15 : 0, anteiso-C15 : 0 and iso-C17 : 0 as major fatty acids; and glycine betaine and glutamate as major compatible solutes) supported the affiliation of the strain to the genus Alkalibacillus. The results of DNA–DNA hybridization and physiological and biochemical tests allowed genotypic and phenotypic differentiation of strain 4AGT from the two recognized Alkalibacillus species. Strain 4AGT therefore represents a novel species, for which the name Alkalibacillus filiformis sp. nov. is proposed. The type strain is 4AGT (=DSM 15448T=ATCC BAA-956T).


Sign in / Sign up

Export Citation Format

Share Document