scholarly journals Biochemical and genetic evidence for the transfer of Enterococcus solitarius Collins et al. 1989 to the genus Tetragenococcus as Tetragenococcus solitarius comb. nov.

2005 ◽  
Vol 55 (2) ◽  
pp. 589-592 ◽  
Author(s):  
Saïd Ennahar ◽  
Yimin Cai

Phylogenetic analysis of 16S rRNA gene sequences revealed that Enterococcus solitarius is not a member of the genus Enterococcus, but is related to species of the genus Tetragenococcus. On a phylogenetic tree, E. solitarius clustered with Tetragenococcus halophilus and Tetragenococcus muriaticus, with which it showed the highest 16S rRNA gene sequence similarity level (about 94 %). Phenotypic studies indicated that E. solitarius was also unable to produce acid from lactose, providing further evidence of its affiliation to the genus Tetragenococcus. DNA hybridization studies indicated that E. solitarius was clearly a separate species, different from T. halophilus and T. muriaticus (reassociation levels of about 23 and 54 %, respectively). As suggested in previous studies, E. solitarius is closely related to but clearly distinct from T. halophilus. Based upon properties that taxonomically distinguish it from species of the genus Enterococcus, it is proposed that E. solitarius be transferred to the genus Tetragenococcus and reclassified as Tetragenococcus solitarius comb. nov. (type strain, 885/78T=ATCC 49428T=CCUG 29293T=CIP 103330T=DSM 5634T=JCM 8736T=LMG 12890T=NCTC 12193T).

2015 ◽  
Vol 65 (Pt_12) ◽  
pp. 4895-4901 ◽  
Author(s):  
Zhaoxu Ma ◽  
Chongxi Liu ◽  
Jianlong Fan ◽  
Hairong He ◽  
Chuang Li ◽  
...  

A novel actinobacterium, designated strain NEAU-QY2T, was isolated from the leaves of Sonchus oleraceus L. specimen, collected from Wuchang, Heilongjiang Province, China. A polyphasic study was carried out to establish the taxonomic position of this strain. The organism formed single spores with rough surfaces on substrate mycelia. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain NEAU-QY2T belonged to the genus Plantactinospora and formed a monophyletic clade with its closest related strains Plantactinospora endophytica YIM 68255T (99.2 % 16S rRNA gene sequence similarity), Plantactinospora veratri NEAU-FHS4T (98.8 %) and Plantactinospora mayteni YIM 61359T (98.7 %), an association that was supported by a bootstrap value of 90 % in the neighbour-joining tree and also recovered with the maximum-likelihood algorithm. However, DNA–DNA hybridization values between strain NEAU-QY2T and the three closely related strains were below 70 %. With reference to phenotypic characteristics, phylogenetic data and DNA–DNA hybridization results, strain NEAU-QY2T was distinguished from closely related strains and is classified as representing a novel species of the genus Plantactinospora, for which the name Plantactinospora sonchi sp. nov. is proposed. The type strain is NEAU-QY2T ( = CGMCC 4.7216T = JCM 30345T).


2006 ◽  
Vol 56 (11) ◽  
pp. 2579-2582 ◽  
Author(s):  
Jee-Min Lim ◽  
Che Ok Jeon ◽  
Dong-Jin Park ◽  
Li-Hua Xu ◽  
Cheng-Lin Jiang ◽  
...  

Strain B538T is a Gram-positive, motile, rod-shaped bacterium, which was isolated from Xinjiang province in China. This organism grew optimally at 30–35 °C and pH 8.0–8.5. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain B538T belonged to the genus Paenibacillus and chemotaxonomic data (DNA G+C content, 47.0 mol%; major isoprenoid quinone, MK-7; cell wall type, A1γ meso-diaminopimelic acid; major fatty acids, anteiso-C15 : 0 and C16 : 0) supported affiliation of the isolate with the genus Paenibacillus. Comparative 16S rRNA gene sequence analyses showed that the isolate was most closely related to Paenibacillus glycanilyticus DS-1T, with 16S rRNA gene sequence similarity of 98.1 %; sequence similarities to other members of the genus Paenibacillus used in the phylogenetic tree were less than 96.5 %. The DNA–DNA relatedness between strain B538T and P. glycanilyticus DS-1T was about 8.0 %. On the basis of physiological and molecular properties, strain B538T (=KCTC 3952T=DSM 16970T) is proposed as the type strain of a novel species within the genus Paenibacillus, for which the name Paenibacillus xinjiangensis sp. nov. is proposed.


2004 ◽  
Vol 54 (5) ◽  
pp. 1799-1803 ◽  
Author(s):  
Jung-Hoon Yoon ◽  
Soo-Hwan Yeo ◽  
In-Gi Kim ◽  
Tae-Kwang Oh

Two Gram-negative, motile, non-spore-forming and slightly halophilic rods (strains SW-145T and SW-156T) were isolated from sea water of the Yellow Sea in Korea. Strains SW-145T and SW-156T grew optimally at 37 and 30–37 °C, respectively, and in the presence of 2–6 % (w/v) NaCl. Strains SW-145T and SW-156T were chemotaxonomically characterized as having ubiquinone-9 as the predominant respiratory lipoquinone and C16 : 0, C18 : 1 ω9c, C16 : 1 ω9c and C12 : 0 3-OH as the major fatty acids. The DNA G+C contents of strains SW-145T and SW-156T were 58 and 57 mol%, respectively. Phylogenetic analyses based on 16S rRNA gene sequences showed that strains SW-145T and SW-156T fell within the evolutionary radiation enclosed by the genus Marinobacter. The 16S rRNA gene sequences of strains SW-145T and SW-156T were 94·8 % similar. Strains SW-145T and SW-156T exhibited 16S rRNA gene sequence similarity levels of 94·3–98·1 and 95·4–97·7 %, respectively, with respect to the type strains of all Marinobacter species. Levels of DNA–DNA relatedness, together with 16S rRNA gene sequence similarity values, indicated that strains SW-145T and SW-156T are members of two species that are distinct from seven Marinobacter species with validly published names. On the basis of phenotypic properties and phylogenetic and genotypic distinctiveness, strains SW-145T (=KCTC 12185T=DSM 16070T) and SW-156T (=KCTC 12184T=DSM 16072T) should be placed in the genus Marinobacter as the type strains of two distinct novel species, for which the names Marinobacter flavimaris sp. nov. and Marinobacter daepoensis sp. nov. are proposed.


2011 ◽  
Vol 61 (9) ◽  
pp. 2292-2297 ◽  
Author(s):  
Guo-Zhen Zhao ◽  
Jie Li ◽  
Hai-Yu Huang ◽  
Wen-Yong Zhu ◽  
Dong-Jin Park ◽  
...  

A Gram-positive, aerobic, actinobacterial strain with rod-shaped spores, designated YIM 63158T, was isolated from the surface-sterilized roots of Artemisia annua L. collected from Yunnan province, south-west China. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain YIM 63158T belonged to the genus Pseudonocardia. The closest neighbours were ‘Pseudonocardia sichuanensis’ KLBMP 1115 (99.9 % 16S rRNA gene sequence similarity), Pseudonocardia adelaidensis EUM 221T (99.1 %) and Pseudonocardia zijingensis DSM 44774T (98.8 %); sequence similarities to other members of the genus Pseudonocardia ranged from 98.6 to 94.4 %. The chemotaxonomic characteristics, such as the cell-wall diaminopimelic acid, whole-cell sugars, fatty acid components and major menaquinones, suggested that the isolate belonged to the genus Pseudonocardia. The G+C content of the genomic DNA was 73.3 mol%. On the basis of physiological, biochemical and chemotaxonomic data, including low DNA–DNA relatedness between the isolate and other members of the genus Pseudonocardia, it is proposed that strain YIM 63158T represents a novel species in this genus, with the name Pseudonocardia kunmingensis sp. nov. The type strain is YIM 63158T ( = DSM 45301T  = CCTCC AA 208081T).


Author(s):  
Yong-Taek Jung ◽  
Soo-Young Lee ◽  
Won-Chan Choi ◽  
Tae-Kwang Oh ◽  
Jung-Hoon Yoon

A Gram-negative, non-sporulating, non-flagellated rod, designated BR-9T, was isolated from soil collected on the Korean peninsula. Strain BR-9T grew optimally at pH 6.0–7.0, at 30 °C and in the absence of NaCl. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain BR-9T belonged to the genus Pedobacter and clustered with Pedobacter insulae DS-139T and Pedobacter koreensis WPCB189T. Strain BR-9T exhibited 98.2 and 97.5 % 16S rRNA gene sequence similarity with P. insulae DS-139T and P. koreensis WPCB189T, respectively, and <96.7 % sequence similarity with the type strains of other species in the genus Pedobacter. Strain BR-9T contained MK-7 as the predominant menaquinone and iso-C15 : 0 and summed feature 3 (C16 : 1ω7c and/or iso-C15 : 0 2-OH) as the major fatty acids. The DNA G+C content of strain BR-9T was 38.5 mol%. DNA–DNA relatedness between strain BR-9T and P. insulae DS-139T and P. koreensis KCTC 12536T was 3.4–4.2 %, which indicated that the isolate was genetically distinct from these type strains. Strain BR-9T was also distinguishable by differences in phenotypic properties. On the basis of the data presented, strain BR-9T is considered to represent a novel species of the genus Pedobacter, for which the name Pedobacter boryungensis sp. nov. is proposed. The type strain is BR-9T ( = KCTC 23344T  = CCUG 60024T).


2007 ◽  
Vol 57 (5) ◽  
pp. 947-950 ◽  
Author(s):  
Jung-Hoon Yoon ◽  
So-Jung Kang ◽  
Jung-Sook Lee ◽  
Tae-Kwang Oh

A Gram-negative, rod-shaped, Flavobacterium-like bacterial strain, DS-20T, was isolated from soil from the island of Dokdo, Korea, and subjected to a polyphasic taxonomic study. Strain DS-20T grew optimally at pH 6.5–7.0 and 25 °C. It contained MK-6 as the predominant menaquinone and iso-C15 : 0, iso-C17 : 0 3-OH and iso-C17 : 1 ω9c as the major fatty acids. The DNA G+C content was 38.2 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain DS-20T belonged to the genus Flavobacterium. Levels of 16S rRNA gene sequence similarity between strain DS-20T and the type strains of recognized Flavobacterium species were below 94.9 %. Strain DS-20T differed from phylogenetically related Flavobacterium species in several phenotypic characteristics. On the basis of its phenotypic and phylogenetic distinctiveness, strain DS-20T was classified in the genus Flavobacterium as representing a novel species, for which the name Flavobacterium terrigena sp. nov. is proposed. The type strain is DS-20T (=KCTC 12761T=DSM 17934T).


2011 ◽  
Vol 61 (6) ◽  
pp. 1413-1417 ◽  
Author(s):  
Yochan Joung ◽  
Kiseong Joh

A Gram-staining-negative, non-motile, yellow-pigmented bacterial strain, designated HMD1043T, was isolated from a mesotrophic artificial lake in Korea. The major fatty acids were anteiso-C15 : 0 (28.3 %), iso-C15 : 0 (22.9 %), summed feature 9 (comprising iso-C17 : 1ω9c and/or 10-methyl C16 : 0; 8.8 %) and iso-C13 : 0 (5.3 %). The DNA G+C content was 31.3 mol%. A phylogenetic tree based on 16S rRNA gene sequences showed that strain HMD1043T formed a lineage within the genus Chryseobacterium and was most closely related to Chryseobacterium antarcticum AT1013T (96.8 % 16S rRNA gene sequence similarity) and Chryseobacterium jeonii AT1047T (96.4 %). On the basis of the evidence presented in this study, strain HMD1043T is described as belonging to a novel species of the genus Chryseobacterium, for which the name Chryseobacterium yonginense sp. nov. is proposed. The type strain is HMD1043T ( = KCTC 22744T  = CECT 7547T).


2010 ◽  
Vol 60 (12) ◽  
pp. 2719-2723 ◽  
Author(s):  
Dong-Heon Lee ◽  
Sung-Ran Moon ◽  
Young-Hyun Park ◽  
Jung-Ho Kim ◽  
Hoon Kim ◽  
...  

A novel Gram-negative, aerobic, motile, short rod-shaped bacterium, designated MS-3T, was isolated from a crude oil-contaminated seashore in Taean, Korea. Strain MS-3T grew at 4–30 °C, at pH 6.0–9.5 and with 0–5 % NaCl and was oxidase- and catalase-positive. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain MS-3T was most similar to Pseudomonas marincola KMM 3042T (97.9 % 16S rRNA gene sequence similarity), P. cuatrocienegasensis 1NT (97.8 %), P. borbori R-20821T (97.3 %) and P. lundensis ATCC 49968T (97.1 %). Relatively low levels of DNA–DNA relatedness were found between strain MS-3T and P. cuatrocienegasensis LMG 24676T (57.2 %), P. borbori LMG 23199T (39.7 %), P. marincola KMM 3042T (32.2 %) and P. lundensis KACC 10832T (32.1 %), which support the classification of strain MS-3T within a novel species of the genus Pseudomonas. The G+C content of the genomic DNA of strain MS-3T was 57.6 mol% and the major isoprenoid quinone was Q-9. Strain MS-3T contained summed feature 3 (iso-C15 : 0 2-OH and/or C16 : 1 ω7c; 38.0 %), C16 : 0 (24.4 %), C18 : 1 ω7c (12.8 %), C12 : 0 (9.6 %) and C10 : 0 3-OH (4.9 %) as the major cellular fatty acids. On the basis of the phenotypic, genotypic and phylogenetic data, strain MS-3T represents a novel species of the genus Pseudomonas, for which the name Pseudomonas taeanensis sp. nov. is proposed. The type strain is MS-3T (=KCTC 22612T =KACC 14032T =JCM 16046T =NBRL 105641T).


2007 ◽  
Vol 57 (8) ◽  
pp. 1685-1688 ◽  
Author(s):  
Hang-Yeon Weon ◽  
Byung-Yong Kim ◽  
Peter Schumann ◽  
Jung-A Son ◽  
Jaeseon Jang ◽  
...  

A pink-coloured bacterial strain, 5516J-15T, was isolated from an air sample from Jeju Island, Republic of Korea. The organism was found to have resistance to UV radiation typical of members of the genus Deinococcus, and it was placed within the radiation of the Deinococcus on a phylogenetic tree based on 16S rRNA gene sequences. Strain 5516J-15T shared low 16S rRNA gene sequence similarity (84.5–87.8 %) with Deinococcus species, showing highest sequence similarity to Deinococcus deserti VCD115T (87.8 %) and Deinococcus indicus Wt/1aT (87.8 %). Strain 5516J-15T had type A3β peptidoglycan with l-ornithine, menaquinone 8 (MK-8) as the major quinone and iso-C12 : 0, anteiso-C13 : 0, iso-C16 : 0 and C16 : 0 as the major fatty acids. Its polar lipid profile contained three unknown aminophospholipids, two unknown polar lipids, one unknown phospholipid and one unknown glycolipid. The DNA G+C content of strain 5516J-15T was 61.3 mol%. Based on the phylogenetic and phenotypic data presented, it is proposed that the unknown strain should be classified within a novel species in the genus Deinococcus with the name Deinococcus cellulosilyticus sp. nov. The type strain is 5516J-15T (=KACC 11606T =DSM 18568T).


2007 ◽  
Vol 57 (8) ◽  
pp. 1834-1839 ◽  
Author(s):  
Min-Ho Yoon ◽  
Wan-Taek Im

Two strains (Gsoil 492T and Gsoil 643T) isolated in Pocheon Province, South Korea, from soil used for ginseng cultivation were characterized using a polyphasic approach. Both isolates comprised Gram-negative, aerobic, non-motile, rod-shaped bacteria. They had similar chemotaxonomic characteristics, e.g. containing MK-7 as the major quinone, having a DNA G+C content in the range 42.5–43.3 mol% and possessing iso-C15 : 0 and iso-C17 : 0 3-OH as the major fatty acids. A phylogenetic analysis based on 16S rRNA gene sequences indicated that the two isolates formed a tight cluster with several uncultured bacterial clones and with the established genera Terrimonas, Niastella and Chitinophaga in the phylum Bacteroidetes but were clearly separate from these genera. The levels of 16S rRNA gene sequence similarity between the isolates and type strains of related genera ranged from 87.5 to 92.4 %. Furthermore, the results of physiological and biochemical tests allowed phenotypic differentiation of the isolates from phylogenetically closely related species with validly published names. The level of 16S rRNA gene sequence similarity between the two strains was 99.5 %, whereas the DNA–DNA relatedness value was 44 %, indicating that they represent separate species. On the basis of the polyphasic evidence, a novel genus, Flavisolibacter gen. nov., and two novel species, Flavisolibacter ginsengiterrae sp. nov. (type strain Gsoil 492T=KCTC 12656T=DSM 18136T) and Flavisolibacter ginsengisoli sp. nov. (type strain Gsoil 643T=KCTC 12657T=DSM 18119T), are proposed. Flavisolibacter ginsengiterrae is the type species of the genus.


Sign in / Sign up

Export Citation Format

Share Document