scholarly journals Paenibacillus alkaliterrae sp. nov., isolated from an alkaline soil in Korea

2005 ◽  
Vol 55 (6) ◽  
pp. 2339-2344 ◽  
Author(s):  
Jung-Hoon Yoon ◽  
So-Jung Kang ◽  
Soo-Hwan Yeo ◽  
Tae-Kwang Oh

A Gram-positive, rod-shaped, motile and endospore-forming bacterial strain, KSL-134T, was isolated from an alkaline soil in Korea, and its taxonomic position was investigated by a polyphasic study. Strain KSL-134T grew optimally at pH 7·5 and 30 °C. Its cell wall peptidoglycan contained meso-diaminopimelic acid. Strain KSL-134T was characterized as having MK-7 as the predominant menaquinone and anteiso-C15 : 0 as the major fatty acid. The DNA G+C content was 49·4 mol%. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain KSL-134T formed a distinct lineage within the evolutionary radiation encompassed by the genus Paenibacillus. Similarity levels between the 16S rRNA gene sequence of strain KSL-134T and those of the type strains of recognized Paenibacillus species ranged from 90·4 to 96·5 %. DNA–DNA relatedness levels and some differential phenotypic properties were enough to distinguish strain KSL-134T from several phylogenetically related Paenibacillus species. On the basis of phenotypic and phylogenetic data, strain KSL-134T (=KCTC 3956T=DSM 17040T) was classified in the genus Paenibacillus as a member of a novel species, for which the name Paenibacillus alkaliterrae sp. nov. is proposed.

2007 ◽  
Vol 57 (1) ◽  
pp. 136-140 ◽  
Author(s):  
Jung-Hoon Yoon ◽  
So-Jung Kang ◽  
Choong-Hwan Lee ◽  
Tae-Kwang Oh

A Gram-positive, rod-shaped or coccoid bacterial strain, DS-51T, was isolated from a soil in Dokdo, Korea, and its taxonomic position was investigated by using a polyphasic approach. Strain DS-51T grew optimally at pH 8.0 and 30 °C without NaCl. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain DS-51T forms a distinct line of descent within the radiation enclosed by the genus Nocardioides. The chemotaxonomic properties of strain DS-51T were consistent with those of the genus Nocardioides: the cell-wall peptidoglycan type was based on ll-2,6-diaminopimelic acid, MK-8(H4) was the predominant menaquinone and iso-C16 : 0 was the major fatty acid. The DNA G+C content was 71.1 mol%. The 16S rRNA gene sequence of strain DS-51T had similarity levels of 92.5–95.1 % with the sequences of the type strains of Nocardioides species. Strain DS-51T could be distinguished from other Nocardioides species by differences in some phenotypic characteristics. On the basis of the phenotypic, chemotaxonomic and phylogenetic data, strain DS-51T represents a novel species of the genus Nocardioides, for which the name Nocardioides insulae sp. nov. is proposed. The type strain is DS-51T (=KCTC 19180T=DSM 17944T).


2005 ◽  
Vol 55 (3) ◽  
pp. 1167-1170 ◽  
Author(s):  
Jung-Hoon Yoon ◽  
Kook Hee Kang ◽  
Soo-Hwan Yeo ◽  
Tae-Kwang Oh

A Gram-negative, non-spore-forming, yellow-pigmented, slightly halophilic bacterial strain, SW-109T, was isolated from a tidal flat of the Yellow Sea in Korea, and subjected to a polyphasic taxonomic study. This isolate did not produce bacteriochlorophyll a and contained ubiquinone-10 as the predominant respiratory lipoquinone and C18 : 1 ω7c as the major fatty acid. The DNA G+C content was 60·3 mol%. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain SW-109T is phylogenetically affiliated to the genus Erythrobacter of the family Sphingomonadaceae. Strain SW-109T exhibited levels of 16S rRNA gene sequence similarity to the type strains of Erythrobacter species of 94·0–96·3 %, making it possible to categorize strain SW-109T as a species that is separate from previously recognized Erythrobacter species. On the basis of its phenotypic properties and phylogenetic distinctiveness, SW-109T (=KCTC 12311T=JCM 12599T) was classified as the type strain of a novel Erythrobacter species, for which the name Erythrobacter luteolus sp. nov. is proposed.


2011 ◽  
Vol 61 (5) ◽  
pp. 1182-1188 ◽  
Author(s):  
Ki-Hoon Oh ◽  
Yong-Taek Jung ◽  
Tae-Kwang Oh ◽  
Jung-Hoon Yoon

A Gram-negative-staining, non-motile and rod-shaped bacterial strain, HD-28T, was isolated from a tidal flat of the Yellow Sea, Korea. Strain HD-28T grew optimally at pH 7.0–8.0 and 30 °C in the presence of 2–3 % (w/v) NaCl. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain HD-28T was most closely related to species of the genus Ruegeria and exhibited 95.5–96.9 % 16S rRNA gene sequence similarity to the type strains of Ruegeria species. A neighbour-joining phylogenetic tree based on gyrB gene sequences also showed that strain HD-28T fell within the cluster comprising recognized species of the genus Ruegeria, showing 77.5–83.9 % sequence similarity. Strain HD-28T contained Q-10 as the predominant ubiquinone and C18 : 1ω7c as the major fatty acid. The major polar lipids detected in strain HD-28T were phosphatidylcholine, phosphatidylglycerol, an unidentified aminolipid and two unidentified lipids. The DNA G+C content was 57.9 mol%. Differential phenotypic properties, together with phylogenetic distinctiveness, demonstrated that strain HD-28T could be distinguished from recognized species of the genus Ruegeria. On the basis of phenotypic, chemotaxonomic and phylogenetic data, strain HD-28T is considered to represent a novel species of the genus Ruegeria, for which the name Ruegeria faecimaris sp. nov. is proposed. The type strain is HD-28T ( = KCTC 23044T = CCUG 58878T).


2020 ◽  
Vol 367 (9) ◽  
Author(s):  
Sooyeon Park ◽  
Siyu Chen ◽  
Jung-Sook Lee ◽  
Wonyong Kim ◽  
Jung-Hoon Yoon

ABSTRACT A Gram-stain-negative bacterial strain, JBTF-M27T, was isolated from a tidal flat from Yellow Sea, Republic of Korea. Neighbor-joining phylogenetic tree of 16S rRNA gene sequences showed that strain JBTF-M27T fell within the clade comprising the type strains of Sulfitobacter species. Strain JBTF-M27T exhibited the highest 16S rRNA gene sequence similarity (98.8%) to the type strain of S. porphyrae. Genomic ANI and dDDH values of strain JBTF-M27T between the type strains of Sulfitobacter species were less than 76.1 and 19.2%, respectively. Mean DNA-DNA relatedness value between strain JBTF-M27T and the type strain of S. porphyrae was 21%. DNA G + C content of strain JBTF-M27T from genome sequence was 57.8% (genomic analysis). Strain JBTF-M27T contained Q-10 as the predominant ubiquinone and C18:1ω7c as the major fatty acid. The major polar lipids of strain JBTF-M27T were phosphatidylcholine, phosphatidylglycerol and one unidentified aminolipid. Distinguished phenotypic properties, along with the phylogenetic and genetic distinctiveness, revealed that strain JBTF-M27T is separated from recognized Sulfitobacter species. On the basis of the data presented, strain JBTF-M27T ( = KACC 21648T = NBRC 114356T) is considered to represent a novel species of the genus Sulfitobacter, for which the name Sulfitobacter sediminilitoris sp. nov. is proposed.


2010 ◽  
Vol 60 (9) ◽  
pp. 2023-2026 ◽  
Author(s):  
Shu-Juan Cao ◽  
Chun-Ping Deng ◽  
Bao-Zhen Li ◽  
Xiu-Qin Dong ◽  
Hong-Li Yuan

A Gram-negative, yellow-pigmented bacterium, designated strain R2A-16T, was isolated from sediment of Rupa Lake in Nepal and analysed using a polyphasic taxonomic approach. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain R2A-16T is affiliated to the genus Cloacibacterium of the family Flavobacteriaceae; 16S rRNA gene sequence similarity between strain R2A-16T and Cloacibacterium normanense CCUG 46293T was 98.07 %. The isolate contained iso-C15 : 0 (35.6 %) as the major fatty acid and menaquinone MK-6 as the predominant respiratory quinone. The G+C content of the genomic DNA was 33.3 mol%. On the basis of its phenotypic properties and phylogenetic distinctiveness, strain R2A-16T represents a novel species of the genus Cloacibacterium, for which the name Cloacibacterium rupense sp. nov. is proposed; the type strain is R2A-16T (=CGMCC 1.7656T =NBRC 104931T).


2010 ◽  
Vol 60 (6) ◽  
pp. 1334-1338 ◽  
Author(s):  
Jung-Hoon Yoon ◽  
Sooyeon Park ◽  
So-Jung Kang ◽  
Jung-Sook Lee ◽  
Keun Chul Lee ◽  
...  

A Gram-positive, non-motile and rod- or coccoid-shaped bacterial strain, MDN22T, was isolated from a soil sample from Korea. Strain MDN22T grew optimally at pH 7.0–8.0, at 30 °C and in the presence of 0–0.5 % (w/v) NaCl. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain MDN22T was phylogenetically most closely related to the genera Nocardioides and Marmoricola. In the neighbour-joining phylogenetic tree, strain MDN22T was most closely related to Nocardioides jensenii KCTC 9134T, with which it exhibited 98.3 % 16S rRNA gene sequence similarity. The strain exhibited 93.1–96.9 % and 95.3–95.9 % 16S rRNA gene sequence similarities to the type strains of other species of the genera Nocardioides and Marmoricola, respectively. The chemotaxonomic properties of strain MDN22T were consistent with those of the genus Nocardioides; the cell-wall peptidoglycan type was based on ll-2,6-diaminopimelic acid, the predominant menaquinone was MK-8(H4) and the major fatty acids were iso-C16 : 0 and C17 : 1. The DNA G+C content was 68.7 mol%. DNA–DNA relatedness data and differential phenotypic properties suggested that strain MDN22T could be differentiated from N. jensenii and Nocardioides dubius. On the basis of the data obtained, strain MDN22T is considered to represent a novel species of the genus Nocardioides, for which the name Nocardioides daedukensis sp. nov., is proposed. The type strain is MDN22T (=KCTC 19601T=CCUG 57505T).


2007 ◽  
Vol 57 (6) ◽  
pp. 1217-1221 ◽  
Author(s):  
Jung-Hoon Yoon ◽  
So-Jung Kang ◽  
Sooyeon Park ◽  
Tae-Kwang Oh

Two Gram-negative, non-spore-forming, motile and helical-shaped bacterial strains, K92T and K93, were isolated from sludge from a dye works in Korea, and their taxonomic positions were investigated by means of a polyphasic approach. Strains K92T and K93 grew optimally at 37 °C and pH 7.0–8.0 in the presence of 0.5 % (w/v) NaCl. They contained Q-10 as the predominant ubiquinone and C18 : 1 ω7c as the major fatty acid. The major polar lipids were phosphatidylcholine, phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine and two unidentified amino-group-containing lipids that were ninhydrin-positive. Their DNA G+C contents were 70.0 mol%. The 16S rRNA gene sequences of K92T and K93 showed no differences, and the two strains had a mean DNA–DNA relatedness of 93 %. Phylogenetic analyses based on 16S rRNA gene sequences showed that strains K92T and K93 formed a distinct evolutionary lineage within the Alphaproteobacteria. The 16S rRNA gene sequences of strains K92T and K93 exhibited similarity values of less than 91.5 % with respect to the 16S rRNA gene sequences of other members of the Alphaproteobacteria. The two strains were distinguishable from phylogenetically related genera through differences in several phenotypic properties. On the basis of the phenotypic, phylogenetic and genetic data, strains K92T and K93 represent a novel genus and species, for which the name Caenispirillum bisanense gen. nov., sp. nov. is proposed. The type strain of Caenispirillum bisanense is K92T (=KCTC 12839T=JCM 14346T).


2006 ◽  
Vol 56 (6) ◽  
pp. 1251-1255 ◽  
Author(s):  
Jung-Hoon Yoon ◽  
So-Jung Kang ◽  
Tae-Kwang Oh

A Gram-negative, non-motile, non-spore-forming, slightly halophilic bacterial strain, DSW-5T, was isolated from seawater off Dokdo, Korea, and subjected to a polyphasic taxonomic study. It grew optimally at 25–28 °C and in the presence of 2 % (w/v) NaCl. Strain DSW-5T contained MK-6 as the predominant menaquinone and iso-C15 : 0, iso-C15 : 1 and iso-C15 : 0 3-OH as the major fatty acids. The major polar lipids detected were phosphatidylethanolamine, three unidentified phospholipids and an amino-group-containing lipid. The DNA G+C content was 30.0 mol%. Phylogenetic analyses based on 16S rRNA gene sequences revealed that strain DSW-5T was most closely related to the genus Polaribacter. Similarity values between the 16S rRNA gene sequences of strain DSW-5T and the type strains of recognized Polaribacter species were in the range 96.2–96.8 %. On the basis of its phenotypic properties and phylogenetic distinctiveness, strain DSW-5T (=KCTC 12392T=DSM 17204T) was classified in the genus Polaribacter as the type strain of a novel species, for which the name Polaribacter dokdonensis sp. nov. is proposed.


2006 ◽  
Vol 56 (4) ◽  
pp. 777-780 ◽  
Author(s):  
Jung-Hoon Yoon ◽  
Mi-Hwa Lee ◽  
So-Jung Kang ◽  
Tae-Kwang Oh

A Gram-negative, non-motile, non-spore-forming bacterial strain, DS-44T, was isolated from soil from Dokdo in Korea, and its taxonomic position was investigated by using a polyphasic approach. It grew optimally at 25 °C and in the presence of 2 % (w/v) NaCl. Strain DS-44T contained MK-7 as the predominant menaquinone and iso-C15 : 0 and C16 : 1 ω7c and/or iso-C15 : 0 2-OH as the major fatty acids. The DNA G+C content was 49·0 mol%. Phylogenetic analyses based on 16S rRNA gene sequences revealed that strain DS-44T belongs to the genus Algoriphagus of the phylum Bacteroidetes. Similarity values between the 16S rRNA gene sequences of strain DS-44T and those of the type strains of recognized Algoriphagus species were in the range 93·8–95·7 %, making it possible to categorize strain DS-44T as a species that is separate from previously described Algoriphagus species. On the basis of its phenotypic properties and phylogenetic distinctiveness, strain DS-44T (=KCTC 12545T=CIP 108837T) was classified in the genus Algoriphagus as the type strain of a novel species, for which the name Algoriphagus terrigena sp. nov. is proposed.


2007 ◽  
Vol 57 (10) ◽  
pp. 2406-2411 ◽  
Author(s):  
Jung-Hoon Yoon ◽  
So-Jung Kang ◽  
Tae-Kwang Oh

A Gram-positive, non-motile, coccoid-shaped, non-spore-forming halophilic bacterial strain, BY-5T, was isolated from a marine solar saltern in Korea and its taxonomic position was investigated by using a polyphasic approach. The novel strain grew optimally at 37 °C and in the presence of 10 % (w/v) NaCl. Strain BY-5T had meso-diaminopimelic acid as the diagnostic diamino acid in the cell-wall peptidoglycan, MK-7 as the predominant menaquinone and anteiso-C15 : 0, iso-C15 : 0, anteiso-C17 : 0 and iso-C17 : 0 as the major fatty acids. The DNA G+C content was 47.9 mol%. Phylogenetic analyses based on 16S rRNA gene sequences revealed that strain BY-5T formed a coherent cluster with Bacillus halophilus and Marinococcus albus. Strain BY-5T exhibited 16S rRNA gene sequence similarity values of 98.7 and 97.4 % to the type strains of B. halophilus and M. albus, respectively. Strain BY-5T was distinguished from B. halophilus and M. albus by several phenotypic properties and DNA–DNA relatedness data. On the basis of the combined chemotaxonomic and phylogenetic data, it is proposed that M. albus, B. halophilus and strain BY-5T should be placed in a new genus as three separate species. Marinococcus albus and Bacillus halophilus are reclassified in a new genus, Salimicrobium gen. nov., as Salimicrobium album comb. nov. and Salimicrobium halophilum comb. nov., respectively. The type species of the new genus is Salimicrobium album. Strain BY-5T (=KCTC 3989T=CIP 108918T) is placed in the genus Salimicrobium as a novel species Salimicrobium luteum sp. nov.


Sign in / Sign up

Export Citation Format

Share Document