scholarly journals Proposal of Giesbergeria voronezhensis gen. nov., sp. nov. and G. kuznetsovii sp. nov. and reclassification of [Aquaspirillum] anulus, [A.] sinuosum and [A.] giesbergeri as Giesbergeria anulus comb. nov., G. sinuosa comb. nov. and G. giesbergeri comb. nov., and [Aquaspirillum] metamorphum and [A.] psychrophilum as Simplicispira metamorpha gen. nov., comb. nov. and S. psychrophila comb. nov.

2006 ◽  
Vol 56 (3) ◽  
pp. 569-576 ◽  
Author(s):  
Margarita Grabovich ◽  
Ekaterina Gavrish ◽  
Jan Kuever ◽  
Anatoly M. Lysenko ◽  
Daria Podkopaeva ◽  
...  

Five Gram-negative, motile, spiral-shaped strains were isolated from a sulfide spring (D-412T), active sludge of wastewater (D-419T, D-420, D-424) and industrial wastewater (D-416). Comparative 16S rRNA gene sequence analysis showed that the isolates belong to the family Comamonadaceae, within the class Betaproteobacteria, but fall into a distinct cluster. On the basis of phenotypic, chemotaxonomic and phylogenetic data, a new genus, Giesbergeria gen. nov., is proposed, including five species. The type species of the genus is Giesbergeria voronezhensis sp. nov. (type strain D-419T=DSM 12825T=CIP 107340T=VKM B-2350T) and other novel members of the genus are Giesbergeria kuznetsovii sp. nov. (type strain D-412T=DSM 12827T=VKM B-2352T), Giesbergeria giesbergeri comb. nov. (basonym Aquaspirillum giesbergeri), Giesbergeria sinuosa comb. nov. (basonym Aquaspirillum sinuosum) and Giesbergeria anulus comb. nov. (basonym Aquaspirillum anulus). Using the same criteria, isolate D-416 (=DSM 12826) was identified as a strain of [Aquaspirillum] metamorphum. Strain D-416, the type strain of [A.] metamorphum and the type strain of [Aquaspirillum] psychrophilum form a distinct cluster within the family Comamonadaceae (97–97·2 % 16S rRNA gene sequence similarity) and share phenotypic and chemotaxonomic properties. Therefore, it is proposed that these strains are reclassified as members of a new genus, Simplicispira gen. nov., as Simplicispira metamorpha comb. nov. (the type species) and Simplicispira psychrophila comb. nov., respectively.

2013 ◽  
Vol 63 (Pt_4) ◽  
pp. 1403-1410 ◽  
Author(s):  
Yun-Hee Jang ◽  
Soo-Jin Kim ◽  
Tomohiko Tamura ◽  
Moriyuki Hamada ◽  
Hang-Yeon Weon ◽  
...  

A Gram-stain-positive, non-motile rod, designated strain SGM3-12T, was isolated from paddy soil in Suwon, Republic of Korea. 16S rRNA gene sequence analysis revealed that the strain represented a novel member of the family Microbacteriaceae . The nearest phylogenetic neighbour was Leifsonia kribbensis MSL-13T (97.4 % 16S rRNA gene sequence similarity). Strain SGM3-12T and Leifsonia kribbensis MSL-13T formed a distinct cluster within the family Microbacteriaceae . Strain SGM3-12T contained MK-12(H2) and MK-11(H2) as the predominant menaquinones with moderate amounts of MK-12 and MK-11; anteiso-C15 : 0 and iso-C16 : 0 as the major cellular fatty acids (>10 % of total); and diphosphatidylglycerol, phosphatidylglycerol and unidentified glycolipids as the polar lipids. The peptidoglycan type of the isolate was B1δ with l-Lys as the diagnostic cell-wall diamino acid. On the basis of these results, strain SGM3-12T represents a novel species within a new genus, for which the name Lysinimonas soli gen. nov., sp. nov. is proposed (the type strain of the type species is SGM3-12T = KACC 13362T = NBRC 107106T). It is also proposed that Leifsonia kribbensis be transferred to this genus as Lysinimonas kribbensis comb. nov. (the type strain is MSL-13T = DSM 19272T = JCM 16015T = KACC 21108T = KCTC 19267T).


2011 ◽  
Vol 61 (10) ◽  
pp. 2515-2519 ◽  
Author(s):  
Valme Jurado ◽  
Leonila Laiz ◽  
Alberto Ortiz-Martinez ◽  
Ingrid Groth ◽  
Cesareo Saiz-Jimenez

A Gram-reaction-positive, motile, coccus-shaped actinobacterium, designated strain T2A-S27T, was isolated from a roof tile in Oporto (Portugal) and studied using a polyphasic approach. The 16S rRNA gene sequence of the novel isolate showed high similarity to that of Kineococcus marinus KST3-3T (97.8 % sequence similarity). Strain T2A-S27T showed lower 16S rRNA gene sequence similarities with other members of the genus Kineococcus and members of the family Kineosporiaceae (<94 %). A phylogenetic tree, based on 16S rRNA gene sequences, showed that strain T2A-S27T formed a coherent clade with the type strain of K. marinus and Quadrisphaera granulorum. The isolate was characterized by the presence of meso-diaminopimelic acid in the cell-wall peptidoglycan, MK-9(H2) as the predominant menaquinone and a polar lipid profile consisting of diphosphatidylglycerol and phosphatidylglycerol. The fatty acid profile was dominated by anteiso-C15 : 0. The DNA G+C content was 76.9 mol%. The low level of DNA–DNA relatedness to K. marinus (46–47 %) and the results of the chemotaxonomic and physiological studies clearly distinguished strain T2A-S27T from recognized species of the genus Kineococcus. On the basis of its phylogenetic position and phenotypic traits, strain T2A-S27T ( = LMG 24148T  = CECT 7306T  = DSM 23768T) represents a novel species of a new genus in the family Kineosporiaceae, for which the name Pseudokineococcus lusitanus gen. nov., sp. nov. is proposed. The misclassified species K. marinus is transferred to the new genus as Pseudokineococcus marinus comb. nov. The type strain of Pseudokineococcus marinus is KST3-3T ( = KCCM 42250T  = NRRL B-24439T).


Author(s):  
Sardar Ali ◽  
Jianmin Xie ◽  
Yuerong Chen ◽  
Runlin Cai ◽  
Aweya Jude Juventus ◽  
...  

A Gram-stain-negative, non-motile, rod-shaped, aerobic bacterium (designated as LMIT005T) was isolated from shrimp ponds in Shantou, China. The new isolate was characterized taxonomically using a polyphasic approach. Based on 16S rRNA gene sequence analysis, strain LMIT005T was found to be affiliated with the family Cyclobacteriaceae of the order Cytophagales while appearing as a distinct lineage. The 16S rRNA gene sequence similarity between strain LMIT005T and Algoriphagus yeomjeoni KCTC 12309T, the closest type strain in the family, was 91.3 %. Strain LMIT005T grew optimally at 25 °C, pH 7 and in the presence of 2.0 % (w/v) NaCl. The DNA G+C content (data from genome sequence) was 40.5 mol%. Compared with reference strain A. yeomjeoni KCTC 12309T, the average nucleotide identity (ANI) of LMIT005T was 70 %. The sole respiratory quinone of LMIT005T was menaquinone (MK-7), and the major fatty acids were summed feature 3 (C16 : 1 ω6c / C16 : 1 ω7c). The polar lipids of strain LMIT005T were mainly composed of phosphatidylethanolamine, phosphatidylcholine, two unidentified amino lipids, two unidentified lipids, one unidentified glycolipid and one unidentified phospholipid. The draft genome of strain LMIT005T comprised 3 089 781 bp (3.09 Mb) nucleotides and 2773 genes. Antimicrobial resistant-related genes (blal, mexA, and mexb) were annotated in the genome of strain LMIT005T, which indicated that it might be able to resist β-lactam antibiotics. This was further verified by antimicrobial resistant test. Given its distinct genomic, morphological, and physiological differences from previously described type strains, strain LMIT005T is proposed as a representative of a novel genus of the family Cyclobacteriaceae, with the name Penaeicola halotolerans gen. nov., sp. nov. The type strain is LMIT005T (=KCTC 82616T=CICC 25047T).


2015 ◽  
Vol 65 (Pt_8) ◽  
pp. 2357-2364 ◽  
Author(s):  
Nupur ◽  
Naga Radha Srinivas Tanuku ◽  
Takaichi Shinichi ◽  
Anil Kumar Pinnaka

A novel brown-coloured, Gram-negative-staining, rod-shaped, motile, phototrophic, purple sulfur bacterium, designated strain AK40T, was isolated in pure culture from a sediment sample collected from Coringa mangrove forest, India. Strain AK40T contained bacteriochlorophyll a and carotenoids of the rhodopin series as major photosynthetic pigments. Strain AK40T was able to grow photoheterotrophically and could utilize a number of organic substrates. It was unable to grow photoautotrophically and did not utilize sulfide or thiosulfate as electron donors. Thiamine and riboflavin were required for growth. The dominant fatty acids were C12 : 0, C16 : 0, C18 : 1ω7c and summed feature 3 (C16 : 1ω7c and/or iso-C15 : 0 2-OH). The polar lipid profile of strain AK40T was found to contain diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and eight unidentified lipids. Q-10 was the predominant respiratory quinone. The DNA G+C content of strain AK40T was 65.5 mol%. 16S rRNA gene sequence comparisons indicated that the isolate represented a member of the family Chromatiaceae within the class Gammaproteobacteria. 16S rRNA gene sequence analysis indicated that strain AK40T was closely related to Phaeochromatium fluminis, with 95.2 % pairwise sequence similarity to the type strain; sequence similarity to strains of other species of the family was 90.8–94.8 %. Based on the sequence comparison data, strain AK40T was positioned distinctly outside the group formed by the genera Phaeochromatium, Marichromatium, Halochromatium, Thiohalocapsa, Rhabdochromatium and Thiorhodovibrio. Distinct morphological, physiological and genotypic differences from previously described taxa supported the classification of this isolate as a representative of a novel species in a new genus, for which the name Phaeobacterium nitratireducens gen. nov., sp. nov. is proposed. The type strain of Phaeobacterium nitratireducens is AK40T ( = JCM 19219T = MTCC 11824T).


2014 ◽  
Vol 64 (Pt_6) ◽  
pp. 1866-1875 ◽  
Author(s):  
Katharina J. Huber ◽  
Pia K. Wüst ◽  
Manfred Rohde ◽  
Jörg Overmann ◽  
Bärbel U. Foesel

Acidobacteria constitute an abundant fraction of the soil microbial community and are currently divided into 26 subdivisions. Most cultivated members of the Acidobacteria are affiliated with subdivision 1, while only a few representatives of subdivisions 3, 4, 8, 10 and 23 have been isolated and described so far. Two novel isolates of subdivision 4 of the Acidobacteria were isolated from subtropical savannah soils and are characterized in the present work. Cells of strains A22_HD_4HT and Ac_23_E3T were immotile rods that divided by binary fission. Colonies were pink and white, respectively. The novel strains A22_HD_4HT and Ac_23_E3T were aerobic mesophiles with a broad range of tolerance towards pH (4.0–9.5 and 3.5–10.0, respectively) and temperature (15–44 and 12–47 °C, respectively). Both showed chemo-organoheterotrophic growth on some sugars, the amino sugar N-acetylgalactosamine, a few amino acids, organic acids and various complex protein substrates. Major fatty acids of A22_HD_4HT and Ac_23_E3T were iso-C15 : 0, summed feature 1 (C13 : 0 3-OH/iso-C15 : 1 H), summed feature 3 (C16 : 1ω7c/C16 : 1ω6c) and anteiso-C17 : 0. The major quinone was MK-8; in addition, MK-7 occurred in small amounts. The DNA G+C contents of A22_HD_4HT and Ac_23_E3T were 53.2 and 52.6 mol%, respectively. The closest described relative was Blastocatella fastidiosa A2-16T, with 16S rRNA gene sequence identity of 93.2 and 93.3 %, respectively. Strains A22_HD_4HT and Ac_23_E3T displayed 16S rRNA gene sequence similarity of 97.4 % to each other. On the basis of the low DNA–DNA hybridization value, the two isolates represent different species. Based on morphological, physiological and molecular characteristics, the new genus Aridibacter gen. nov. is proposed, with two novel species, the type species Aridibacter famidurans sp. nov. (type strain A22_HD_4HT = DSM 26555T = LMG 27985T) and a second species, Aridibacter kavangonensis sp. nov. (type strain Ac_23_E3T = DSM 26558T = LMG 27597T).


2011 ◽  
Vol 61 (9) ◽  
pp. 2238-2246 ◽  
Author(s):  
Ivone Vaz-Moreira ◽  
Vânia Figueira ◽  
Ana R. Lopes ◽  
Evie De Brandt ◽  
Peter Vandamme ◽  
...  

Two bacterial strains (SC-089T and SC-092T) isolated from sewage sludge compost were characterized by using a polyphasic approach. The isolates were Gram-negative short rods, catalase- and oxidase-positive, and showed good growth at 30 °C, at pH 7 and with 1 % (w/v) NaCl. Ubiquinone 8 was the major respiratory quinone, and phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol were amongst the major polar lipids. On the basis of 16S rRNA gene sequence analysis, the strains were observed to be members of the family Alcaligenaceae, but could not be identified as members of any validly described genus. The low levels of 16S rRNA gene sequence similarity to other recognized taxa, together with comparative analysis of phenotypic traits and chemotaxonomic markers, supported the proposal of a new genus within the family Alcaligenaceae, for which the name Candidimonas gen. nov. is proposed. Strains SC-089T and SC-092T, which shared 99.1 % 16S rRNA gene sequence similarity, could be differentiated at the phenotypic level, and DNA–DNA hybridization results supported their identification as representing distinct species. The names proposed for these novel species are Candidimonas nitroreducens sp. nov. (type strain, SC-089T = LMG 24812T = CCUG 55806T) and Candidimonas humi sp. nov. (type strain, SC-092T = LMG 24813T = CCUG 55807T).


2013 ◽  
Vol 63 (Pt_4) ◽  
pp. 1342-1349 ◽  
Author(s):  
Mareike Jogler ◽  
Hong Chen ◽  
Julia Simon ◽  
Manfred Rohde ◽  
Hans-Jürgen Busse ◽  
...  

A previously undescribed aerobic, non-sporulating bacterium, strain G1A_585T, was isolated from an oligotrophic freshwater lake in Bavaria, Germany. The rod-shaped cells were Gram-stain-negative and non-motile. Based on 16S rRNA gene sequence similarity, strain G1A_585T was a member of the family Sphingomonadaceae and shared <95.2 % similarity with type strains of all members of the most closely related genus, Sphingopyxis . Phyogenetically, the isolate shared a root with strains of three marine species, Sphingopyxis flavimaris DSM 16223T, Sphingopyxis marina DSM 22363T and Sphingopyxis litoris DSM 22379T. The polar lipids of strain G1A_585T were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylmonomethylethanolamine, phosphatidyldimethylethanolamine, phosphatidylcholine, sphingoglycolipids, three glycolipids and one unknown lipid. Ubiquinone-10 was the dominant quinone (93.1 %) and ubiquinone-9 (6.5 %) was also detected. The major cellular fatty acids were summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c; 38.2 %); C16 : 1ω7c (33.6 %) and C14 : 0 2-OH (17.8 %). The major polyamine was spermidine and traces of 1,3-diaminopropane, putrescine and spermine were also detected. The DNA G+C content of strain G1A_585T was 55.7 mol% and the isolate was oxidase- and catalase-positive. Based on the phylogenetic relationship, the low DNA G+C content compared with most other members of the genus Sphingopyxis and the presence of signature nucleotides in the 16S rRNA gene sequence, a novel species in a new genus and species, Sphingorhabdus planktonica gen. nov., sp. nov., is proposed; the type strain of Sphingorhabdus planktonica is G1A_585T ( = DSM 25081T  = LMG 26646T). Because Sphingopyxis flavimaris DSM 16223T, Sphingopyxis marina DSM 22363T and Sphingopyxis litoris DSM 22379T form a phylogenetic group together with strain G1A_585T that is clearly separated from all other known Sphingopyxis strains and share signature nucleotides, these three Sphingopyxis strains are reclassified as members of the proposed novel genus Sphingorhabdus: Sphingorhabdus flavimaris comb. nov. (type strain SW-151T = DSM 16223T = KCTC 12232T), Sphingorhabdus marina comb. nov. (type strain FR1087T = DSM 22363T = IMSNU 14132T = KCTC 12763T = JCM 14161T) and Sphingorhabdus litoris comb. nov. (type strain FR1093T = DSM 22379T = IMSNU 14133T = KCTC 12764T = JCM 14162T).


2005 ◽  
Vol 55 (5) ◽  
pp. 1979-1983 ◽  
Author(s):  
Michael Goodfellow ◽  
Luis A. Maldonado ◽  
Erika T. Quintana

A polyphasic study was undertaken to clarify the taxonomic position of Nonomuraea flexuosa DSM 41386T. The distinct 16S rRNA gene sequence phyletic branch formed by this strain was equated with nine related monophyletic clades composed of representatives of the genera classified in the family Streptosporangiaceae. The organism produced a PCR product characteristic of this taxon when examined using a set of oligonucleotide primers specific for members of the family Streptosporangiaceae. Strain DSM 41386T could also be distinguished from representatives of the nine genera assigned to this family using a combination of chemotaxonomic, morphological and physiological properties. It is evident from the genotypic and phenotypic data that strain DSM 41386T is misclassified in the genus Nonomuraea and merits recognition as a monospecific genus within the family Streptosporangiaceae. It is proposed that the name Thermopolyspora flexuosa gen. nov., comb. nov., nom. rev. be used for this purpose, with the type strain DSM 41386T (=NRRL B-24348T).


2014 ◽  
Vol 64 (Pt_4) ◽  
pp. 1296-1303 ◽  
Author(s):  
Haruka Horino ◽  
Takashi Fujita ◽  
Akio Tonouchi

An obligately anaerobic bacterial strain designated T-1-35T was isolated as a dominant cultivable cellulose-degrading bacterium from soil of a Japanese rice field as an anaerobic filter-paper degrader. Cells of strain T-1-35T stained Gram-positive and were non-spore-forming rods with rounded ends, 0.8–1.0×3.5–15.0 µm, and motile by means of two to four polar flagella. Cells of strain T-1-35T exhibited pleomorphism: in aged cultures (over 90 days of incubation), almost all cells were irregularly shaped. Although no spore formation was observed, cells tolerated high temperatures, up to 90 °C for 10 min. The temperature range for growth was 15–40 °C, with an optimum at 35 °C. The pH range for growth was 5.5–9.0, with an optimum at pH 8.0–8.5 (slightly alkaliphilic). Strain T-1-35T fermented some carbohydrates to produce ethanol and lactate as the major products. Major cellular fatty acids were iso-C16 : 0 and iso-C13 : 0 3-OH. Phylogenetic analysis based on the 16S rRNA gene sequence revealed that strain T-1-35T belonged to Clostridium rRNA cluster III. The closest relative of strain T-1-35T was Bacteroides cellulosolvens WM2T, with 16S rRNA gene sequence similarity of 93.4 %. Phenotypic, physiological and molecular genetic methods demonstrated that strain T-1-35T was distinct from its phylogenetic relatives (members of Clostridium rRNA cluster III) because it predominantly produced ethanol, iso-C13 : 0 3-OH was a major cellular fatty acid and it always exhibited pleomorphism. On the basis of the results of a polyphasic taxonomic study, strain T-1-35T is considered to represent a novel genus and species, Anaerobacterium chartisolvens gen. nov., sp. nov. The type strain of Anaerobacterium chartisolvens is T-1-35T ( = DSM 27016T = NBRC 109520T). In addition, from the results of our phylogenetic analysis and its phenotypic features, the species Bacteroides cellulosolvens Murray et al. 1984 is proposed to be reclassified in the new genus Pseudobacteroides as Pseudobacteroides cellulosolvens gen. nov., comb. nov., with the type strain WM2T ( = ATCC 35603T = DSM 2933T = NRCC 2944T).


2013 ◽  
Vol 63 (Pt_12) ◽  
pp. 4552-4556 ◽  
Author(s):  
Jie Li ◽  
Sheng Qin ◽  
Zhi-Qing You ◽  
Li-Juan Long ◽  
Xin-Peng Tian ◽  
...  

A novel filamentous bacterium, strain SCSIO 11153T, was isolated from a sediment sample collected from the Indian Ocean (80° 03.099′ E 01° 03.300′ N) at a depth of 4593 m. Good growth was observed at 50–55 °C and pH 7.0 with 3 % NaCl. It formed ivory–white colonies with radial wrinkles. Aerial mycelium was absent on the media tested. Phenotypic characteristics and 16S rRNA gene sequence analysis indicated that strain SCSIO 11153T belonged to the family Thermoactinomycetaceae . It exhibited 96.4 % and 96.2 % 16S rRNA gene sequence similarities to Melghirimyces algeriensis NariEXT and Melghirimyces thermohalophilus Nari11AT, respectively, while lower sequence similarity values (<95.4 %) were observed between strain SCSIO 11153T and other species of genera in the family Thermoactinomycetaceae . The menaquinone type was MK-7. Major cellular fatty acids were iso-C15 : 0, anteiso-C15 : 0 and iso-C17 : 0. The polar lipids were diphosphatidylglycerol, phosphatidylmethylethanolamine, phosphatidylethanolamine and phosphatidylglycerol. The DNA G+C content of strain SCSIO 11153T was 52.6 mol%. On the basis of the genotypic and phenotypic characteristics, it is proposed that strain SCSIO 11153T represents a novel species of the genus Melghirimyces with the name Melghirimyces profundicolus sp. nov. The type strain is SCSIO 11153T ( = DSM 45787T = CCTCC AA 2012007T = NBRC 109068T).


Sign in / Sign up

Export Citation Format

Share Document