scholarly journals Candidimonas nitroreducens gen. nov., sp. nov. and Candidimonas humi sp. nov., isolated from sewage sludge compost

2011 ◽  
Vol 61 (9) ◽  
pp. 2238-2246 ◽  
Author(s):  
Ivone Vaz-Moreira ◽  
Vânia Figueira ◽  
Ana R. Lopes ◽  
Evie De Brandt ◽  
Peter Vandamme ◽  
...  

Two bacterial strains (SC-089T and SC-092T) isolated from sewage sludge compost were characterized by using a polyphasic approach. The isolates were Gram-negative short rods, catalase- and oxidase-positive, and showed good growth at 30 °C, at pH 7 and with 1 % (w/v) NaCl. Ubiquinone 8 was the major respiratory quinone, and phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol were amongst the major polar lipids. On the basis of 16S rRNA gene sequence analysis, the strains were observed to be members of the family Alcaligenaceae, but could not be identified as members of any validly described genus. The low levels of 16S rRNA gene sequence similarity to other recognized taxa, together with comparative analysis of phenotypic traits and chemotaxonomic markers, supported the proposal of a new genus within the family Alcaligenaceae, for which the name Candidimonas gen. nov. is proposed. Strains SC-089T and SC-092T, which shared 99.1 % 16S rRNA gene sequence similarity, could be differentiated at the phenotypic level, and DNA–DNA hybridization results supported their identification as representing distinct species. The names proposed for these novel species are Candidimonas nitroreducens sp. nov. (type strain, SC-089T = LMG 24812T = CCUG 55806T) and Candidimonas humi sp. nov. (type strain, SC-092T = LMG 24813T = CCUG 55807T).

2011 ◽  
Vol 61 (8) ◽  
pp. 1817-1822 ◽  
Author(s):  
Xue-Wei Xu ◽  
Ying-Yi Huo ◽  
Chun-Sheng Wang ◽  
Aharon Oren ◽  
Heng-Lin Cui ◽  
...  

Two Gram-negative, motile, aerobic bacterial strains, designated B2T and 1_C16_27T, were respectively isolated from a seawater sample collected from the East China Sea and a semi-coke sample from north-eastern Estonia. Their genetic, phenotypic and chemotaxonomic properties were studied. The isolates were short rods with polar flagella and were positive for catalase and oxidase activities. Q-10 was the predominant respiratory ubiquinone. The major polar lipids were phosphatidylglycerol, diphosphatidylglycerol and two unidentified glycolipids. The major fatty acids were nonadecanoic (C19 : 0 cyclo), octadecanoic (C18 : 0 and C18 : 0 3-OH), octadecenoic (C18 : 1) and hexadecanoic (C16 : 0) acids. The G+C content of the genomic DNA was 58.1–59.3 mol%. 16S rRNA gene sequence analysis revealed that the two isolates represent a distinct lineage within the family Hyphomicrobiaceae. The phylogenetically closest relatives were Cucumibacter (92.7–93.7 % 16S rRNA gene sequence similarity), Devosia (92.9–94.4 %) and Zhangella (91.7–92.1 %). Differential phenotypic properties, together with phylogenetic and genetic distinctiveness, revealed that strains B2T and 1_C16_27T could be differentiated from each other and from members of the genera Cucumibacter, Devosia and Zhangella. Therefore, it is proposed that strains B2T and 1_C16_27T represent two novel species in a new genus, for which the names Pelagibacterium halotolerans gen. nov., sp. nov. (the type species; type strain B2T  = CGMCC 1.7692T  = JCM 15775T) and Pelagibacterium luteolum sp. nov. (type strain 1_C16_27T  = CGMCC 1.10267T  = JCM 16552T  = CELMS EEUT 1C1627T) are proposed.


2005 ◽  
Vol 55 (2) ◽  
pp. 885-889 ◽  
Author(s):  
In-Gi Kim ◽  
Mi-Hwa Lee ◽  
Seo-Youn Jung ◽  
Jae Jun Song ◽  
Tae-Kwang Oh ◽  
...  

Three Gram-variable, rod-shaped bacterial strains, TF-16T, TF-19 and TF-80T, were isolated from a tidal flat of Daepo Beach (Yellow Sea) near Mokpo City, Korea, and their taxonomic positions were investigated by a polyphasic approach. These isolates grew optimally in the presence of 2 % NaCl and at 30 °C. Their peptidoglycan types were based on l-Lys–Gly. The predominant menaquinone detected in the three strains was MK-7. The three strains contained large amounts of the branched fatty acids iso-C17 : 0, anteiso-C13 : 0, iso-C13 : 0 and iso-C15 : 0. The DNA G+C contents of strains TF-16T, TF-19 and TF-80T were 48·6, 48·4 and 48·0 mol%, respectively. The three strains formed a coherent cluster with Exiguobacterium species in a phylogenetic tree based on 16S rRNA gene sequences. They showed closest phylogenetic affiliation to Exiguobacterium aurantiacum, with 16S rRNA gene sequence similarity values of 98·1–98·3 %. The three strains exhibited 16S rRNA gene sequence similarity values of 94·0–94·6 % to the type strains of other Exiguobacterium species. Levels of DNA–DNA relatedness indicated that strains TF-16T and TF-19 and strain TF-80T are members of two species that are separate from E. aurantiacum. On the basis of phenotypic, phylogenetic and genetic data, strains TF-16T and TF-19 and strain TF-80T represent two novel species in the genus Exiguobacterium; the names Exiguobacterium aestuarii sp. nov. (type strain TF-16T=KCTC 19035T=DSM 16306T; reference strain TF-19) and Exiguobacterium marinum sp. nov. (type strain TF-80T=KCTC 19036T=DSM 16307T) are proposed.


2011 ◽  
Vol 61 (8) ◽  
pp. 1954-1961 ◽  
Author(s):  
An Coorevits ◽  
Niall A. Logan ◽  
Anna E. Dinsdale ◽  
Gillian Halket ◽  
Patsy Scheldeman ◽  
...  

A polyphasic taxonomic study was performed on 22 thermotolerant, aerobic, endospore-forming bacteria from dairy environments. Seventeen isolates were retrieved from raw milk, one from a filter cloth and four from grass, straw or milking equipment. These latter four isolates (R-6546, R-7499, R-7764 and R-7440) were identified as Bacillus thermoamylovorans based on DNA–DNA hybridizations (values above 70 % with Bacillus thermoamylovorans LMG 18084T) but showed discrepancies in characteristics with the original species description, so an emended description of this species is given. According to 16S rRNA gene sequence analysis and DNA–DNA hybridization experiments, the remaining 18 isolates (R-6488T, R-28193, R-6491, R-6492, R-7336, R-33367, R-6486, R-6770, R-31288, R-28160, R-26358, R-7632, R-26955, R-26950, R-33520, R-6484, R-26954 and R-7165) represented one single species, most closely related to Bacillus thermoamylovorans (93.9 % 16S rRNA gene sequence similarity), for which the name Bacillus thermolactis is proposed. Cells were Gram-stain-positive, facultatively anaerobic, endospore-forming rods that grew optimally at 40–50 °C. The cell wall peptidoglycan type of strain R-6488T, the proposed type strain, was A1γ based on meso-diaminopimelic acid. Major fatty acids of the strains were C16 : 0 (28.0 %), iso-C16 : 0 (12.1 %) and iso-C15 : 0 (12.0 %). MK-7 was the predominant menaquinone, and major polar lipids were diphosphatidylglycerol, phosphatidylglycerol and some unidentified phospholipids. DNA G+C content was 35.0 mol%. Phenotypic properties allowed discrimination from other thermotolerant species of the genus Bacillus and supported the description of the novel species Bacillus thermolactis, with strain R-6488T ( = LMG 25569T  = DSM 23332T) as the proposed type strain.


2021 ◽  
Author(s):  
Tomoyuki Konishi ◽  
Tomohiko Tamura ◽  
Toru Tobita ◽  
Saori Sakai ◽  
Namio Matsuda ◽  
...  

Abstract Gram-positive, rod-shaped, spore-forming, thermophilic, acidophilic bacterium, designated strain skT53T, was isolated from farm soil in Tokyo, Japan. The strain grew aerobically at 37–55°C (optimum 50°C) and pH 4.0–6.0 (optimum 5.0). Phylogenetic analysis of the 16S rRNA gene sequence showed that the isolate was most closely related to the type strain of Effusibacillus consociatus (94.3% similarity). The G + C content of the genomic DNA was 48.22 mol%. MK-7 was the predominant respiratory quinone. The major fatty acids were anteiso-C15:0, iso-C15:0, iso-C16:0 and C18:3ω6c. The results of phenotypic and chemotaxonomic, 16S rRNA gene sequence similarity, and whole genome analyses support strain skT53T as representing a novel species of Effusibacillus dendaii sp. nov. is proposed. The type strain is strain skT53T (= NBRC 114101T = TBRC 11241T).


2015 ◽  
Vol 65 (Pt_11) ◽  
pp. 3965-3970 ◽  
Author(s):  
Estelle Jumas-Bilak ◽  
Philippe Bouvet ◽  
Emma Allen-Vercoe ◽  
Fabien Aujoulat ◽  
Paul A. Lawson ◽  
...  

Five human clinical isolates of an unknown, strictly anaerobic, slow-growing, Gram-stain-negative, rod-shaped micro-organism were subjected to a polyphasic taxonomic study. Comparative 16S rRNA gene sequence-based phylogeny showed that the isolates grouped in a clade that included members of the genera Pyramidobacter, Jonquetella, and Dethiosulfovibrio; the type strain of Pyramidobacter piscolens was the closest relative with 91.5–91.7 % 16S rRNA gene sequence similarity. The novel strains were mainly asaccharolytic and unreactive in most conventional biochemical tests. Major metabolic end products in trypticase/glucose/yeast extract broth were acetic acid and propionic acid and the major cellular fatty acids were C13 : 0 and C16 : 0, each of which could be used to differentiate the strains from P. piscolens. The DNA G+C content based on whole genome sequencing for the reference strain 22-5-S 12D6FAA was 57 mol%. Based on these data, a new genus, Rarimicrobium gen. nov., is proposed with one novel species, Rarimicrobium hominis sp. nov., named after the exclusive and rare finding of the taxon in human samples. Rarimicrobium is the fifth genus of the 14 currently characterized in the phylum Synergistetes and the third one in subdivision B that includes human isolates. The type strain of Rarimicrobium hominis is ADV70T ( = LMG 28163T = CCUG 65426T).


2015 ◽  
Vol 65 (Pt_11) ◽  
pp. 3885-3893 ◽  
Author(s):  
Sandra Baumgardt ◽  
Igor Loncaric ◽  
Peter Kämpfer ◽  
Hans-Jürgen Busse

Two Gram-stain-positive bacterial isolates, strain 2385/12T and strain 2673/12T were isolated from a tapir and a dog's nose, respectively. The two strains were rod to coccoid-shaped, catalase-positive and oxidase-negative. The highest 16S rRNA gene sequence similarity identified Corynebacterium singulare CCUG 37330T (96.3 % similarity) as the nearest relative of strain 2385/12T and suggested the isolate represented a novel species. Corynebacterium humireducens DSM 45392T (98.7 % 16S rRNA gene sequence similarity) was identified as the nearest relative of strain 2673/12T. Results from DNA–DNA hybridization with the type strain of C. humireducens demonstrated that strain 2673/12T also represented a novel species. Strain 2385/12T showed a quinone system consisting predominantly of menaquinones MK-8(H2) and MK-9(H2) whereas strain 2673/12T contained only MK-8(H2) as predominant quinone. The polar lipid profiles of the two strains showed the major compounds phosphatidylglycerol, diphosphatidylglycerol and an unidentified glycolipid. Phosphatidylinositol was identified as another major lipid in 2673/12T whereas it was only found in moderate amounts in strain 2385/12T. Furthermore, moderate to minor amounts of phosphatidylinositol-mannoside, β-gentiobiosyl diacylglycerol and variable counts of several unidentified lipids were detected in the two strains. Both strains contained corynemycolic acids. The polyamine patterns were characterized by the major compound putrescine in strain 2385/12T and spermidine in strain 2673/12T. In the fatty acid profiles, predominantly C18 : 1ω9c and C16 : 0 were detected. The two strains are distinguishable from each other and the nearest related established species of the genus Corynebacterium phylogenetically and phenotypically. In conclusion, two novel species of the genus Corynebacterium are proposed, namely Corynebacterium tapiri sp. nov. (type strain, 2385/12T = CCUG 65456T = LMG 28165T) and Corynebacterium nasicanis sp. nov. (type strain, 2673/12T = CCUG 65455T = LMG 28166T).


2007 ◽  
Vol 57 (8) ◽  
pp. 1834-1839 ◽  
Author(s):  
Min-Ho Yoon ◽  
Wan-Taek Im

Two strains (Gsoil 492T and Gsoil 643T) isolated in Pocheon Province, South Korea, from soil used for ginseng cultivation were characterized using a polyphasic approach. Both isolates comprised Gram-negative, aerobic, non-motile, rod-shaped bacteria. They had similar chemotaxonomic characteristics, e.g. containing MK-7 as the major quinone, having a DNA G+C content in the range 42.5–43.3 mol% and possessing iso-C15 : 0 and iso-C17 : 0 3-OH as the major fatty acids. A phylogenetic analysis based on 16S rRNA gene sequences indicated that the two isolates formed a tight cluster with several uncultured bacterial clones and with the established genera Terrimonas, Niastella and Chitinophaga in the phylum Bacteroidetes but were clearly separate from these genera. The levels of 16S rRNA gene sequence similarity between the isolates and type strains of related genera ranged from 87.5 to 92.4 %. Furthermore, the results of physiological and biochemical tests allowed phenotypic differentiation of the isolates from phylogenetically closely related species with validly published names. The level of 16S rRNA gene sequence similarity between the two strains was 99.5 %, whereas the DNA–DNA relatedness value was 44 %, indicating that they represent separate species. On the basis of the polyphasic evidence, a novel genus, Flavisolibacter gen. nov., and two novel species, Flavisolibacter ginsengiterrae sp. nov. (type strain Gsoil 492T=KCTC 12656T=DSM 18136T) and Flavisolibacter ginsengisoli sp. nov. (type strain Gsoil 643T=KCTC 12657T=DSM 18119T), are proposed. Flavisolibacter ginsengiterrae is the type species of the genus.


2006 ◽  
Vol 56 (5) ◽  
pp. 959-963 ◽  
Author(s):  
Shams Tabrez Khan ◽  
Yasuyoshi Nakagawa ◽  
Shigeaki Harayama

Four Gram-negative, orange-coloured, aerobic, heterotrophic bacteria were isolated from sediment samples collected on the Pacific coast of Japan near the cities of Toyohashi and Katsuura. 16S rRNA gene sequence analysis indicated that these strains form a distinct lineage within the family Flavobacteriaceae. The four isolates shared 99.9–100 % 16S rRNA gene sequence similarity with each other and showed 88–90.9 % similarity with their neighbours in the family Flavobacteriaceae. The four strains also shared high DNA–DNA reassociation values of 67–99 % with each other. All the strains grew at 37 °C but not at 4 °C, and degraded gelatin, starch and DNA. The major fatty acids were i-C15 : 0, a-C15 : 0, i-C16 : 0 and i-C17 : 0 3-OH. However, two common fatty acids of members of the Flavobacteriaceae, i-C15 : 1 and a-C15 : 1, were absent in these strains. The DNA G+C contents of the four strains were in the range 35–37 mol%. On the basis of the polyphasic evidence, it was concluded that these strains should be classified as a novel genus and a novel species in the family Flavobacteriaceae, for which the name Sandarakinotalea sediminis gen. nov., sp. nov. is proposed. The type strain of Sandarakinotalea sediminis is CKA-5T (=NBRC 100970T=LMG 23247T).


2015 ◽  
Vol 65 (Pt_8) ◽  
pp. 2357-2364 ◽  
Author(s):  
Nupur ◽  
Naga Radha Srinivas Tanuku ◽  
Takaichi Shinichi ◽  
Anil Kumar Pinnaka

A novel brown-coloured, Gram-negative-staining, rod-shaped, motile, phototrophic, purple sulfur bacterium, designated strain AK40T, was isolated in pure culture from a sediment sample collected from Coringa mangrove forest, India. Strain AK40T contained bacteriochlorophyll a and carotenoids of the rhodopin series as major photosynthetic pigments. Strain AK40T was able to grow photoheterotrophically and could utilize a number of organic substrates. It was unable to grow photoautotrophically and did not utilize sulfide or thiosulfate as electron donors. Thiamine and riboflavin were required for growth. The dominant fatty acids were C12 : 0, C16 : 0, C18 : 1ω7c and summed feature 3 (C16 : 1ω7c and/or iso-C15 : 0 2-OH). The polar lipid profile of strain AK40T was found to contain diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and eight unidentified lipids. Q-10 was the predominant respiratory quinone. The DNA G+C content of strain AK40T was 65.5 mol%. 16S rRNA gene sequence comparisons indicated that the isolate represented a member of the family Chromatiaceae within the class Gammaproteobacteria. 16S rRNA gene sequence analysis indicated that strain AK40T was closely related to Phaeochromatium fluminis, with 95.2 % pairwise sequence similarity to the type strain; sequence similarity to strains of other species of the family was 90.8–94.8 %. Based on the sequence comparison data, strain AK40T was positioned distinctly outside the group formed by the genera Phaeochromatium, Marichromatium, Halochromatium, Thiohalocapsa, Rhabdochromatium and Thiorhodovibrio. Distinct morphological, physiological and genotypic differences from previously described taxa supported the classification of this isolate as a representative of a novel species in a new genus, for which the name Phaeobacterium nitratireducens gen. nov., sp. nov. is proposed. The type strain of Phaeobacterium nitratireducens is AK40T ( = JCM 19219T = MTCC 11824T).


2006 ◽  
Vol 56 (4) ◽  
pp. 841-845 ◽  
Author(s):  
Shams Tabrez Khan ◽  
Yasuyoshi Nakagawa ◽  
Shigeaki Harayama

The taxonomic position of four Gram-negative, rod-shaped, golden-yellow-coloured bacteria isolated from marine sediments was determined. Analysis of the almost complete 16S rRNA gene sequences indicated that these isolates belong to the family Flavobacteriaceae. An unclassified bacterium, NBRC 15975, was found to be the closest relative, showing 16S rRNA gene sequence similarity of 93 %; other related genera shared only 87·9–90·5 % similarity. In contrast, the four isolates shared high levels of 16S rRNA gene sequence similarity (99·3–99·7 %) and high DNA–DNA reassociation values (93–104 %). The isolates could be differentiated phenotypically from other genera by the abilities to reduce nitrate and to degrade gelatin, casein and starch. The only respiratory quinone was MK-6, and the major fatty acids were iso-C15 : 0, iso-C15 : 1, anteiso-C15 : 0, iso-C17 : 1 ω9c and iso-C17 : 0 3-OH. The DNA G+C content was 38–40 mol%. Differentiating phenotypic characteristics and large phylogenetic distances between the isolates and previously published genera indicated that the isolates constitute a novel genus, for which the name Sediminicola gen. nov. is proposed. The type species is Sediminicola luteus sp. nov. (type strain CNI-3T=NBRC 100966T=LMG 23246T).


Sign in / Sign up

Export Citation Format

Share Document