scholarly journals Cryptococcus rajasthanensis sp. nov., an anamorphic yeast species related to Cryptococcus laurentii, isolated from Rajasthan, India

2007 ◽  
Vol 57 (2) ◽  
pp. 414-418 ◽  
Author(s):  
Puja Saluja ◽  
G. S. Prasad

Two novel anamorphic yeast strains (S-15LT and 3-C1) were isolated from the inflorescences of plants collected in two different towns in Rajasthan State, India. Sequencing of the D1/D2 domains of the large-subunit (LSU) rDNA and the internal transcribed spacer (ITS) regions suggested they are strains of the same species. Phenotypic characteristics such as the absence of fermentation, the absence of sexual structures and ballistoconidia, the assimilation of myo-inositol and d-glucuronate, and positive Diazonium blue B and urease reactions indicated that these strains belong to the genus Cryptococcus. The novel strains differed from Cryptococcus laurentii in six physiological tests and differed from other related species in more than six tests. A phylogenetic analysis of the sequences of the D1/D2 domains of the LSU rDNA and the ITS regions placed these strains in the Bulleromyces clade within the order Tremellales, with C. laurentii as their closest described relative. The novel strains showed 1.6 and 7.5 % divergence in the D1/D2 domain of the LSU rDNA and ITS regions, respectively, with respect to C. laurentii. The divergence from other species was more than 3 % for the D1/D2 domain and more than 9 % for the ITS region. On the basis of the phenotypic and molecular data, strains S-15LT and 3-C1 represent a novel species within the genus Cryptococcus, for which the name Cryptococcus rajasthanensis sp. nov. is proposed. The type strain is S-15LT (=MTCC 7075T=CBS 10406T).

2005 ◽  
Vol 55 (3) ◽  
pp. 1365-1368 ◽  
Author(s):  
Kee-Sun Shin ◽  
Yong-Ha Park ◽  
Dong-Jin Park ◽  
Chang-Jin Kim

Cryptococcus taeanensis, a new anamorphic yeast species originating from a salt farm on the Taean peninsula in Korea, is described. Strain 3-12T grew by budding, contained ubiquinone Q-10 and xylose in cell hydrolysates, utilized d-glucuronate and did not ferment d-glucose. A molecular phylogenetic analysis based on the large-subunit rRNA D1/D2 domain and ITS region sequences placed C. taeanensis near Auriculibuller fuscus and Bullera japonica, recently proposed taxa of the Tremellales. However, these species were distinguishable based on standard physiological tests used for yeast identification, with characteristics including the assimilation of l-sorbose, absence of ballistoconidia, no arbutin hydrolysis and no growth in the presence of 0·01 % cycloheximide. The isolate exhibited the typical physiology of the genus Cryptococcus Vuillemin, but its large-subunit rRNA D1/D2 domain sequence was clearly distinct from previously described species in the genus. Therefore, on the basis of these results, Cryptococcus taeanensis sp. nov. is proposed; the type strain is 3-12T (=KCTC 17149T=CBS 9742T).


2013 ◽  
Vol 63 (Pt_9) ◽  
pp. 3501-3505 ◽  
Author(s):  
Liang Chen ◽  
Lin Zhang ◽  
Zhi-Hui Li ◽  
Feng-Li Hui

Two strains (NYNU 121010T and NYNU 121032) of a novel basidiomycetous yeast species belonging to the genus Sympodiomycopsis were isolated from insect frass collected from trunks of a pagoda tree (Sophora japonica L.) in Yantai, Shandong province, east China. The sequence analyses of the D1/D2 domain of the large subunit (LSU) rRNA gene and the internal transcribed spacer (ITS) region indicated that the closest relatives were Sympodiomycopsis kandeliae FIRDI 007T, Sympodiomycopsis paphiopedili CBS 7429T and Sympodiomycopsis sp. S6A. The D1/D2 sequences of the novel strains differed by 12 nt substitutions (2 %) from the type strain of S. kandeliae, and by 13 nt substitutions (2.2 %) from the type strain of S. paphiopedili and from Sympodiomycopsis sp. S6A. The novel strains differed from closely related species by more than 4.6 % substitutions in the ITS region. The novel strains can also be distinguished from S. kandeliae and S. paphiopedili on the basis of a number of morphological and physiological characteristics and represent a novel species in the genus Sympodiomycopsis, for which the name Sympodiomycopsis yantaiensis sp. nov. is proposed. The type strain is NYNU 121010T ( = CICC 32998T = CBS 12813T). The Mycobank deposit number is MB 804119.


2015 ◽  
Vol 65 (Pt_6) ◽  
pp. 1755-1758 ◽  
Author(s):  
Yun Wang ◽  
Yong-Cheng Ren ◽  
Zheng-Tian Zhang ◽  
Fu-Hua Wu ◽  
Tao Ke ◽  
...  

Two strains of an asexual cellobiose-fermenting yeast species were isolated from rotten wood samples collected in Funiu Mountain Nature Reserve in Henan Province, central China. Molecular phylogenetic analysis that included the nearly complete small subunit (SSU), the internal transcribed spacer (ITS) region and the D1/D2 domains of the large subunit (LSU) rDNA showed that these strains belonged to the Candida kruisii clade, with Candida kruisii and Candida cretensis as their closest phylogenetic neighbours. The nucleotide differences between the novel strains and the type strains of C. kruisii and C. cretensis were 30 and 36 substitutions, respectively, in the D1/D2 LSU rDNA, 40 and 44 substitutions, respectively, in the ITS region and 19 and 23 substitutions, respectively, in the SSU rDNA. The novel strains can also be distinguished from their closest described species, C. kruisii and C. cretensis, by a number of physiological characteristics, and represent a novel species of the genus Candida, for which the name Candida funiuensis sp. nov. is proposed. The type strain is NYNU 14625T ( = CICC 33050T = CBS 13911T). The Mycobank number is MB 811503.


2015 ◽  
Vol 65 (Pt_8) ◽  
pp. 2466-2471 ◽  
Author(s):  
Melissa Fontes Landell ◽  
Luciana R. Brandão ◽  
Silvana V. B. Safar ◽  
Fatima C. O. Gomes ◽  
Ciro R. Félix ◽  
...  

Two independent surveys of yeasts associated with different bromeliads in different Brazilian regions led to the proposal of a novel yeast species, Bullera vrieseae sp. nov., belonging to the Tremellales clade (Agaricomycotina, Basidiomycota). Analysis of the sequences in the internal transcribed spacer (ITS) region and D1/D2 domain of the LSU rRNA gene suggested affinity to a phylogenetic lineage that includes Bullera miyagiana and Bullera sakaeratica. Six isolates of the novel species were obtained from different bromeliads and regions in Brazil. Sequence analysis of the D1/D2 domains of the large subunit of the rRNA gene showed that the novel species differs from B. miyagiana and B. sakaeratica by 85 and 64 nt substitutions, respectively and by more than 75 nt substitutions in the ITS region. Phenotypically, Bullera vrieseae sp. nov. can be distinguished from both species based on the assimilation of meso-erythritol, which was negative for B. vrieseae sp. nov. but positive for the others, assimilation of d-glucosamine, which was positive for B. vrieseae sp. nov. but negative for B. miyagiana and of l-sorbose, which was negative for B. vrieseae sp. nov. but positive for B. sakaeratica. The novel species Bullera vrieseae sp. nov. is proposed to accommodate these isolates. The type strain of Bullera vrieseae sp. nov. is UFMG-CM-Y379T (BRO443T; ex-type CBS 13870T).


2011 ◽  
Vol 61 (2) ◽  
pp. 469-473 ◽  
Author(s):  
Yu-Hui Wei ◽  
Guey-Yuh Liou ◽  
Hsin-Yi Liu ◽  
Fwu-Ling Lee

Three ustilaginomycetous anamorphic strains were isolated from flowers of Kandelia candel in mangrove forests of Taiwan. Phylogenetic analyses based on the combined sequences of internal transcribed spacer 1 (ITS1)-5.8S-ITS2 and the D1/D2 domain of the large-subunit (LSU) rDNA indicated that the closest recognized species was Sympodiomycopsis paphiopedili. The results of a DNA–DNA hybridization experiment and the physiological characteristics showed that the three strains represent a novel species within the genus Sympodiomycopsis. The name Sympodiomycopsis kandeliae sp. nov. is proposed, with FIRDI 007T (=BCRC 23165T =CBS 11676T) as the type strain. In addition, based on phenotypic characteristics and the phylogenetic analyses of the combined sequences of the ITS region and D1/D2 domain of the LSU rDNA, Sympodiomycopsis lanaiensis was clustered with the genus Jaminaea. A new combination, Jaminaea lanaiensis comb. nov. (type strain LM418T =DSM 18755T =ATCC MYA-4092T =NRRL Y-48466T =CBS 10858T =BCRC 23177T), is proposed.


2012 ◽  
Vol 62 (1) ◽  
pp. 242-245 ◽  
Author(s):  
Xinyan Guo ◽  
Hongkun Zhu ◽  
Feng-Yan Bai

Two xylose-utilizing yeast strains isolated from rotten wood collected in the rainforest in different mountains of Hainan province, southern China, were studied. Sequence analysis of the large subunit rDNA D1/D2 domain and internal transcribed spacer region revealed that the strains represent a novel anamorphic yeast species, for which the name Candida cellulosicola sp. nov. is proposed; the type strain is HNX16-2T ( = CGMCC 2.3503T = CBS 11952T). Phylogenetically, the novel species was closely related to a xylose-utilizing teleomorphic ascomycetous yeast species Spencermartinsiella europaea in the family Trichomonascaceae, but differed from the latter by 3.0 % mismatches in the D1/D2 domain.


Phytotaxa ◽  
2018 ◽  
Vol 365 (2) ◽  
pp. 169 ◽  
Author(s):  
YICHEN CAO ◽  
PU-DONG LI ◽  
JIAMIN ZHAO ◽  
HONG-KAI WANG ◽  
RAJESH JEEWON ◽  
...  

A novel yeast-like species was isolated from the rhizosphere of tobacco root collected in Guizhou province, China. Sequence analysis of the large subunit (LSU) rDNA gene indicates that the isolate represents a novel species and most closely related to Meira siamensis. The phylogenetic analysis based on the Internal Transcribed Spacer (ITS) rDNA gene also confirmed the placement of the novel species within Meira. However, the novel species differs from M. siamensis by 9.1% bp difference in the LSU rDNA sequence region and also in terms of physiological characteristics as compared to other species. This species is proposed as M. nicotianae sp. nov. Co-incubation of M. nicotianae strain CY-1 and tobacco plantlets demonstrates that this fungal strain can promote growth of tobacco plant. Scanning electron micrographs and other morphological illustrations along with phylogenies are presented in this paper.


2006 ◽  
Vol 56 (11) ◽  
pp. 2703-2706 ◽  
Author(s):  
Carolina H. Pohl ◽  
Johan L. F. Kock ◽  
Pieter W. J. van Wyk ◽  
Jacobus Albertyn

A novel yeast strain, CBS 10258T, was isolated from the atmosphere in central South Africa. Sequence analysis of the D1/D2 domain and internal transcribed spacer region of the novel strain indicates that it represents a novel species within the Cryptococcus laurentii complex. Phylogenetic analyses based on the D1/D2 domain revealed that the novel strain occupies a relatively isolated position within this complex with Papiliotrema bandonii, Cryptococcus perniciosus, Cryptococcus nemorosus and Cryptococcus sp. CBS 8363 being the closest relatives. However, the novel strain could be distinguished from related species by standard physiological tests including the inability to assimilate rhamnose, methyl α-d-glucoside, salicin, lactose, erythritol, ribitol, xylitol, citrate and ethanol. In addition, no extracellular starch production was observed and the isolate was able to grow in the absence of additional vitamins. On the basis of these results, we suggest that the new strain represents a novel species for which the name Cryptococcus anemochoreius sp. nov. is proposed [type strain CBS 10258T (=NRRL Y-27920T)].


2011 ◽  
Vol 61 (3) ◽  
pp. 690-694 ◽  
Author(s):  
Chin-Feng Chang ◽  
Cheng-Hsu Yao ◽  
Shuh-Sen Young ◽  
Savitree Limtong ◽  
Rungluk Kaewwichian ◽  
...  

During surveys on yeast diversity in forest soils from Taiwan and Thailand, ten yeast strains isolated from different samples were found to have similar molecular and physiological characteristics. Sequence analysis of small subunit (SSU) rDNA, the D1/D2 domain of large subunit (LSU) rDNA and internal transcribed spacer (ITS)-5.8S rDNA demonstrated that these strains were closely related to Scheffersomyces spartinae. The novel strains could be differentiated from S. spartinae by a 0.9 % sequence divergence (5 substitutions, 0 gaps) in the D1/D2 domain of LSU rDNA, a 1.5 % divergence (8 substitutions, 0 gaps) in the ITS-5.8S rDNA and a 0.7 % divergence (12 substitutions, 2 gaps) in the SSU rDNA. The novel strains also showed specific patterns of electrophoretic karyotypes that differed from that of S. spartinae. Therefore, a novel yeast species, Candida gosingica sp. nov., is proposed to accommodate these strains. The type strain SJ7S11T (=BCRC 23194T=CBS 11433T) was assigned and deposited in the Bioresource Collection and Research Center (BCRC), Food Industry Development and Research Institute, Hsinchu, Taiwan, and Centraalbureau voor Schimmelcultures (CBS), Utrecht, The Netherlands.


2015 ◽  
Vol 65 (Pt_6) ◽  
pp. 1855-1859 ◽  
Author(s):  
Ana Raquel O. Santos ◽  
Elisa S. Faria ◽  
Marc-André Lachance ◽  
Carlos A. Rosa

Five strains of a novel methanol-assimilating yeast species were isolated from mango (Mangifera indica) leaves collected at the campus of the Federal University of Minas Gerais in Brazil. The sequences of the internal transcribed spacer (ITS) region and the D1/D2 domains of the large subunit of the rRNA gene showed that this species belongs to the Ogataea clade and is related to O. allantospora, O. chonburiensis, O. dorogensis, O. kodamae, O. paradorogensis and Candida xyloterini (Ogataea clade). The novel species differs in the D1/D2 domains of the large subunit of the rRNA gene by 12 to 40 substitutions from these Ogataea species. The name Ogataea mangiferae sp. nov. is proposed for this novel species. The type strain of Ogataea mangiferae sp. nov. is UFMG-CM-Y253T ( = CBS 13492T). The Mycobank number is MB 811646.


Sign in / Sign up

Export Citation Format

Share Document