scholarly journals Sympodiomycopsis kandeliae sp. nov., a basidiomycetous anamorphic fungus from mangroves, and reclassification of Sympodiomycopsis lanaiensis as Jaminaea lanaiensis comb. nov.

2011 ◽  
Vol 61 (2) ◽  
pp. 469-473 ◽  
Author(s):  
Yu-Hui Wei ◽  
Guey-Yuh Liou ◽  
Hsin-Yi Liu ◽  
Fwu-Ling Lee

Three ustilaginomycetous anamorphic strains were isolated from flowers of Kandelia candel in mangrove forests of Taiwan. Phylogenetic analyses based on the combined sequences of internal transcribed spacer 1 (ITS1)-5.8S-ITS2 and the D1/D2 domain of the large-subunit (LSU) rDNA indicated that the closest recognized species was Sympodiomycopsis paphiopedili. The results of a DNA–DNA hybridization experiment and the physiological characteristics showed that the three strains represent a novel species within the genus Sympodiomycopsis. The name Sympodiomycopsis kandeliae sp. nov. is proposed, with FIRDI 007T (=BCRC 23165T =CBS 11676T) as the type strain. In addition, based on phenotypic characteristics and the phylogenetic analyses of the combined sequences of the ITS region and D1/D2 domain of the LSU rDNA, Sympodiomycopsis lanaiensis was clustered with the genus Jaminaea. A new combination, Jaminaea lanaiensis comb. nov. (type strain LM418T =DSM 18755T =ATCC MYA-4092T =NRRL Y-48466T =CBS 10858T =BCRC 23177T), is proposed.

2007 ◽  
Vol 57 (2) ◽  
pp. 414-418 ◽  
Author(s):  
Puja Saluja ◽  
G. S. Prasad

Two novel anamorphic yeast strains (S-15LT and 3-C1) were isolated from the inflorescences of plants collected in two different towns in Rajasthan State, India. Sequencing of the D1/D2 domains of the large-subunit (LSU) rDNA and the internal transcribed spacer (ITS) regions suggested they are strains of the same species. Phenotypic characteristics such as the absence of fermentation, the absence of sexual structures and ballistoconidia, the assimilation of myo-inositol and d-glucuronate, and positive Diazonium blue B and urease reactions indicated that these strains belong to the genus Cryptococcus. The novel strains differed from Cryptococcus laurentii in six physiological tests and differed from other related species in more than six tests. A phylogenetic analysis of the sequences of the D1/D2 domains of the LSU rDNA and the ITS regions placed these strains in the Bulleromyces clade within the order Tremellales, with C. laurentii as their closest described relative. The novel strains showed 1.6 and 7.5 % divergence in the D1/D2 domain of the LSU rDNA and ITS regions, respectively, with respect to C. laurentii. The divergence from other species was more than 3 % for the D1/D2 domain and more than 9 % for the ITS region. On the basis of the phenotypic and molecular data, strains S-15LT and 3-C1 represent a novel species within the genus Cryptococcus, for which the name Cryptococcus rajasthanensis sp. nov. is proposed. The type strain is S-15LT (=MTCC 7075T=CBS 10406T).


2013 ◽  
Vol 63 (Pt_9) ◽  
pp. 3501-3505 ◽  
Author(s):  
Liang Chen ◽  
Lin Zhang ◽  
Zhi-Hui Li ◽  
Feng-Li Hui

Two strains (NYNU 121010T and NYNU 121032) of a novel basidiomycetous yeast species belonging to the genus Sympodiomycopsis were isolated from insect frass collected from trunks of a pagoda tree (Sophora japonica L.) in Yantai, Shandong province, east China. The sequence analyses of the D1/D2 domain of the large subunit (LSU) rRNA gene and the internal transcribed spacer (ITS) region indicated that the closest relatives were Sympodiomycopsis kandeliae FIRDI 007T, Sympodiomycopsis paphiopedili CBS 7429T and Sympodiomycopsis sp. S6A. The D1/D2 sequences of the novel strains differed by 12 nt substitutions (2 %) from the type strain of S. kandeliae, and by 13 nt substitutions (2.2 %) from the type strain of S. paphiopedili and from Sympodiomycopsis sp. S6A. The novel strains differed from closely related species by more than 4.6 % substitutions in the ITS region. The novel strains can also be distinguished from S. kandeliae and S. paphiopedili on the basis of a number of morphological and physiological characteristics and represent a novel species in the genus Sympodiomycopsis, for which the name Sympodiomycopsis yantaiensis sp. nov. is proposed. The type strain is NYNU 121010T ( = CICC 32998T = CBS 12813T). The Mycobank deposit number is MB 804119.


Author(s):  
Michael Brysch-Herzberg ◽  
Dénes Dlauchy ◽  
Martin Seidel ◽  
Gábor Péter

Five yeast strains isolated from forest habitats in Hungary and Germany were characterized phenotypically and by sequencing of the D1/D2 domain of the large subunit rRNA gene and the ITS1-5.8S-ITS2 (ITS) region of the rRNA gene. The strains have identical D1/D2 domain and ITS region sequences. By sequence comparisons, Candida mycetangii and Candida maritima were identified as the closest relatives among the currently recognized yeast species. The DNA sequences of the investigated strains differ by 1.2 % (six substitutions) in the D1/D2 domain and by 3.5 % (12 substitutions and eight indels) in the ITS region from the type strain of C. mycetangii (CBS 8675T) while by 1.2 % (six substitutions and one indel) in the D1/D2 domain and by 7 % (32 substitutions and seven indels) in the ITS region from the type strain of C. maritima (CBS 5107T). Because the intraspecies heterogeneity seems to be very low and the distance to the most closely related species is above the commonly expected level for intraspecies variability Cyberlindnera sylvatica sp. nov. (holotype, CBS 16335T; isotype, NCAIM Y.02233T; MycoBank no., MB 835268) is proposed to accommodate the above-noted five yeast strains. Phenotypically the novel species can be distinguished from C. mycetangii and C. maritima by the formation of ascospores. Cyberlindnera sylvatica forms one or two hat-shaped ascospores per ascus on many different media as well as well-developed pseudohyphae and true hyphae. Additionally, we propose the transfer of three anamorphic members of the Cyberlindnera americana sub-clade to the genus Cyberlindnera as the following new taxonomic combinations Cyberlindnera maritima f.a., comb. nov., Cyberlindnera mycetangii f.a., comb. nov. and Cyberlindnera nakhonratchasimensis f.a., comb. nov.


2021 ◽  
Author(s):  
Snigdha Tiwari ◽  
Bhaskar C. Behera ◽  
Abhishek Baghela

Abstract Three strains SMT1.3, SMT1.10, and SMT2.2, representing a novel asexual ascomycetous yeast species, were isolated from the gut of a termite Odontotermes horni in Maharashtra, India. Phylogenetic analyses of the LSU, ITS and SSU sequences revealed that they belonged to the genus Nakazawaea, with N. siamensis as the closest relative. The new species differed from the type strain of N. siamensis (DMKU-RK467T) by 1.93% nucleotide substitutions in the D1/D2 region of the large subunit (LSU) rRNA gene, 0.53% nucleotide substitutions in the small subunit (SSU) rRNA gene and 12.6% nucleotide substitutions in the internal transcribed spacer (ITS) region. Notable physiological differences were also observed between N. siamensis and the new species. Hence, the species Nakazawaea odontotermitis f.a., sp. nov. is proposed. The type strain is SMT1.3T (MTCC 13105 = NFCCI 5011). The GenBank accession numbers of the LSU and ITS and SSU sequences of Nakazawaea odontotermitis f.a., sp. nov. are MZ234240, MZ234239 and OK384663. The MycoBank number is MB 841926.


2015 ◽  
Vol 65 (Pt_10) ◽  
pp. 3392-3399 ◽  
Author(s):  
Kelle C. Freel ◽  
Guillaume Charron ◽  
Jean-Baptiste Leducq ◽  
Christian R. Landry ◽  
Joseph Schacherer

A thorough sampling of maple, oak, birch, and apple tree bark in North America yielded a set of isolates that represent a yeast species not yet formally described. The strains obtained were all isolated from the Canadian province of Québec. These four isolates have identical electrophoretic karyotypes, distinct from other species of the genus Lachancea, and are most closely related to the formally recognized species Lachancea thermotolerans according to the D1/D2 domain of the LSU rDNA gene and 5.8S–ITS region. Previous studies revealed the existence of a population of strains closely related to L. thermotolerans, with unique D1/D2 sequences and the ability to grow on melibiose, which is also true for these isolates. The sequences obtained here (for the D1/D2, and 5.8S–ITS region) are identical among the four strains, and in a phylogenetic analysis of the D1/D2 region, the strains form a distinct clade with the previously described population closely related to L. thermotolerans, composed of isolates from Japan, as well as from the provinces of Ontario and Québec in Canada. On the basis of select physiological and phylogenetic characteristics, a novel ascosporogenous yeast species, Lachancea quebecensis sp. nov., is proposed. The type strain LL11_022T ( = CBS 14138T = CLIB 1763T = UCDFST 15-106T) was isolated from maple tree bark in the Station Duchesnay, QC region of Québec, Canada. The MycoBank number is MB811749.


2015 ◽  
Vol 65 (Pt_8) ◽  
pp. 2466-2471 ◽  
Author(s):  
Melissa Fontes Landell ◽  
Luciana R. Brandão ◽  
Silvana V. B. Safar ◽  
Fatima C. O. Gomes ◽  
Ciro R. Félix ◽  
...  

Two independent surveys of yeasts associated with different bromeliads in different Brazilian regions led to the proposal of a novel yeast species, Bullera vrieseae sp. nov., belonging to the Tremellales clade (Agaricomycotina, Basidiomycota). Analysis of the sequences in the internal transcribed spacer (ITS) region and D1/D2 domain of the LSU rRNA gene suggested affinity to a phylogenetic lineage that includes Bullera miyagiana and Bullera sakaeratica. Six isolates of the novel species were obtained from different bromeliads and regions in Brazil. Sequence analysis of the D1/D2 domains of the large subunit of the rRNA gene showed that the novel species differs from B. miyagiana and B. sakaeratica by 85 and 64 nt substitutions, respectively and by more than 75 nt substitutions in the ITS region. Phenotypically, Bullera vrieseae sp. nov. can be distinguished from both species based on the assimilation of meso-erythritol, which was negative for B. vrieseae sp. nov. but positive for the others, assimilation of d-glucosamine, which was positive for B. vrieseae sp. nov. but negative for B. miyagiana and of l-sorbose, which was negative for B. vrieseae sp. nov. but positive for B. sakaeratica. The novel species Bullera vrieseae sp. nov. is proposed to accommodate these isolates. The type strain of Bullera vrieseae sp. nov. is UFMG-CM-Y379T (BRO443T; ex-type CBS 13870T).


2020 ◽  
Vol 70 (4) ◽  
pp. 2596-2601 ◽  
Author(s):  
Varunya Sakpuntoon ◽  
Jirameth Angchaun ◽  
Chanita Boonmak ◽  
Chin-Feng Chang ◽  
Shiu-Mei Liu ◽  
...  

Seven yeast strains, DMKU VGT1-14T, DMKU VGT1-19T, DMKU-JMGT1-28, DMKU-JMGT1-32, DMKU VGT2-06, DMKU VGT2-19 and DMKU VGT6-14, were isolated from a grease trap in Thailand and two strains, SJ-1 and SN-102 were isolated from the sea surface microlayer in Taiwan. On the basis of phenotypic characteristics and sequence analysis of the D1/D2 region of the large subunit (LSU) rRNA gene and the internal transcribed spacer (ITS) region, these strains represented two novel yeast species of the genus Wickerhamiella. In terms of pairwise sequence similarity, four strains, DMKU VGT1-14, DMKU-JMGT1-32, DMKU VGT6-14 and SN-102, were closely related to Wickerhamiella infanticola NRRL Y-17858T but differed by 13 nucleotide substitutions with one gap (2.46 %) in the D1/D2 domain of the LSU rRNA gene and 15 nucleotide substitutions with 23 gaps (4.2 %) in the ITS region. The strains DMKU VGT1-19T, DMKU-JMGT1-28, DMKU VGT2-06, DMKU VGT2-19 and SJ-1, differed from the type strain of the most closely related species, Wickerhamiella sorbophila NRRL Y-7921T, by nine nucleotide substitutions with one gap (1.66 %) in the D1/D2 domain of the LSU rRNA gene and nine nucleotide substitutions with 17 gaps (2.52%) in the ITS region. Hence, the names Wickerhamiella osmotolerans sp. nov. and Wickerhamiella tropicalis sp. nov. are proposed to accommodate these species in the genus Wickerhamiella. The holotypes are W. osmotolerans DMKU VGT1-14T (ex-type strain TBRC 11425=PYCC 8359=CGMCC 2.6179; Mycobank number 833394) and W. tropicalis DMKU VGT1-19T (ex-type strain TBRC 11426=PYCC 8360=CGMCC 2.6180; Mycobank number 833393).


Author(s):  
Chin-Feng Chang ◽  
Sing-Yii Huang ◽  
Ching-Fu Lee

Mangroves grow in the intertidal zone, which alternates between fresh water and sea water, with abundant bioresources. In mangrove habitats, yeasts play an important role in the decomposition of organic matter, and such nutrient cycling has high ecological importance. During a study of the diversity of yeast from Taiwan mangroves, seven strains of basidiomycetous yeasts were isolated and these yeasts represent two novel yeast species belonging to the genus Vishniacozyma. According to the sequences of the D1/D2 domain of large subunit (LSU) rRNA and the internal transcribed spacer (ITS) region, these seven strains could be clearly classified into two groups representing two individual, distinct species. Strains HM5L06, HM6L07, HM11L11 and BJ3S01, differed from their closest relative species Vishniacozyma phoenicis by 4–5 nt substitutions (no gaps) in the sequences of the D1/D2 domain of LSU rRNA and by 23 nt substitutions (10 gaps) in the ITS region. Strains HM6L11, HM7L02 and HM8L19, differed from their closest relative species Vishniacozyma penaeus by 7 nt substitutions (one gap) in the sequences of the D1/D2 domain of LSU rRNA and by 27 nt substitutions (12 gaps) in the ITS region. The scientific names of Vishniacozyma taiwanica sp. nov. and Vishniacozyma changhuana sp. nov. are proposed for these strains. The holotypes are Vishniacozyma taiwanica BCRC 23477T (ex-type HM5L06=CBS 16558; MycoBank number MB837428) and Vishniacozyma changhuana BCRC 23478T (ex-type HM6L11=CBS 16556; MycoBank number MB837429).


2021 ◽  
Vol 7 (11) ◽  
pp. 957
Author(s):  
Supakorn Nundaeng ◽  
Nakarin Suwannarach ◽  
Savitree Limtong ◽  
Surapong Khuna ◽  
Jaturong Kumla ◽  
...  

Ascomycetous yeast species in the genus Wickerhamomyces (Saccharomycetales, Wickerhamomycetaceae) are isolated from various habitats and distributed throughout the world. Prior to this study, 35 species had been validly published and accepted into this genus. Beneficially, Wickerhamomyces species have been used in a number of biotechnologically applications of environment, food, beverage industries, biofuel, medicine and agriculture. However, in some studies, Wickerhamomyces species have been identified as an opportunistic human pathogen. Through an overview of diversity, taxonomy and recently published literature, we have updated a brief review of Wickerhamomyces. Moreover, two new Wickerhamomyces species were isolated from the soil samples of Assam tea (Camellia sinensis var. assamica) that were collected from plantations in northern Thailand. Herein, we have identified these species as W. lannaensis and W. nanensis. The identification of these species was based on phenotypic (morphological, biochemical and physiological characteristics) and molecular analyses. Phylogenetic analyses of a combination of the internal transcribed spacer (ITS) region and the D1/D2 domains of the large subunit (LSU) of ribosomal DNA genes support that W. lannaensis and W. nanensis are distinct from other species within the genus Wickerhamomyces. A full description, illustrations and a phylogenetic tree showing the position of both new species have been provided. Accordingly, a new combination species, W. myanmarensis has been proposed based on the phylogenetic results. A new key for species identification is provided.


2021 ◽  
Author(s):  
Bruno W. Ferreira ◽  
Janaina L. Alves ◽  
Pedro W. Crous ◽  
Robert Barreto

Abstract Korunomyces is a genus including fungi that produce stipitate, profusely branched, multicellular asexual reproductive structures (propagules) on leaves and in culture. Three species have been described in the genus: Korunomyces terminaliae – the type species, K. prostratus and K. zapatensis. No molecular studies have ever been conducted to elucidate the phylogenetic placement of Korunomyces. Recently, DNA sequences were obtained from pure cultures of K. prostratus and K. terminaliae, enabling an elucidation of their taxonomic placement. Isolates of K. prostratus obtained from diseased tissues of Miconia calvescens were observed for the first time to form pycnidial conidiomata in culture. A multi-gene phylogeny, including the large subunit of the nrDNA (nc LSU rDNA), internal transcribed spacer (ITS) region, polymerase II second largest subunit (RPB2) and translation elongation factor 1-α (TEF1), placed K. prostratus and K. terminaliae within Coniella (Schizoparmaceae). As Korunomyces is younger than Coniella, it is reduced to synonymy, and a new name and a new combination are proposed for these two species, namely: Coniella ferreirense nom. nov. and Coniella prostrata comb. nov. An emended description of Coniella to include the occasional formation of distinct and elaborate asexual propagules is also provided.


Sign in / Sign up

Export Citation Format

Share Document