scanning electron micrographs
Recently Published Documents


TOTAL DOCUMENTS

949
(FIVE YEARS 200)

H-INDEX

41
(FIVE YEARS 5)

2023 ◽  
Vol 83 ◽  
Author(s):  
A. S. Ferreira-Sá ◽  
L. Leonardo-Silva ◽  
V. G. Cortez ◽  
S. Xavier-Santos

Abstract Calvatia is a genus of gasteroid fungi, comprising about 47 species worldwide. In this paper we report the second worldwide occurrence of two poorly known species of Calvatia, recorded in the Cerrado biome of Brazil: C. oblongispora and C. nodulata. Detailed morphological descriptions and illustrations, including scanning electron micrographs of hyphae and basidiospores are provided, as well a discussion on their taxonomy and geographic distribution.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Sanjay Mavinkere Rangappa ◽  
Jyotishkumar Parameswaranpillai ◽  
Suchart Siengchin ◽  
Mohammad Jawaid ◽  
Togay Ozbakkaloglu

AbstractIn this work, fillers of waste chicken feather and abundantly available lignocellulose Ceiba Pentandra bark fibers were used as reinforcement with Biopoxy matrix to produce the sustainable composites. The aim of this work was to evaluate the mechanical, thermal, dimensional stability, and morphological performance of waste chicken feather fiber/Ceiba Pentandra bark fiber filler as potential reinforcement in carbon fabric-layered bioepoxy hybrid composites intended for engineering applications. These composites were prepared by a simple, low cost and user-friendly fabrication methods. The mechanical (tensile, flexural, impact, hardness), dimensional stability, thermal stability, and morphological properties of composites were characterized. The Ceiba Pentandra bark fiber filler-reinforced carbon fabric-layered bioepoxy hybrid composites display better mechanical performance compared to chicken feather fiber/Ceiba Pentandra bark fiber reinforced carbon fabrics layered bioepoxy hybrid composites. The Scanning electron micrographs indicated that the composites exhibited good adhesion at the interface of the reinforcement material and matrix system. The thermogravimetric studies revealed that the composites possess multiple degradation steps, however, they are stable up to 300 °C. The thermos-mechanical studies showed good dimensional stability of the composites. Both studied composites display better thermal and mechanical performance compared to neat bioepoxy or non-bioepoxy thermosets and are suitable for semi-structural applications.


Polymers ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 172
Author(s):  
Chang Liu ◽  
Hejing Yan ◽  
Suwen Liu ◽  
Xuedong Chang

Chestnut is popular worldwide for its unique flavor, high eating quality and nutrition. Here, we evaluated the influence of phosphorylation and acetylation on the structural, physicochemical and functional properties of chestnut starch. Scanning electron micrographs showed the agglomeration of starch granules and the appearance of numerous dents on the starch granule surface under phosphorylation and acetylation. X-ray diffractograms confirmed that the modification treatments did not affect the C-type crystal pattern, but reduced the relative crystallinity of the chestnut starch, particularly phosphorylation. Moreover, modification improved the paste transparency of the starch. Differential scanning calorimeter analysis revealed that the gelatinization temperature and enthalpy of the starch decreased with the increasing substitution degree, particularly in phosphorylated starch. The Rapid Visco Analyser analysis demonstrated that phosphorylation could greatly improve the pasting properties of chestnut starch. In addition, phosphorylated and acetylated starch had a smaller amount of slowly digested starch and a larger amount of resistant starch relative to native chestnut starch. In conclusion, the functional and physicochemical properties of chestnut starch can be significantly improved through phosphorylation and acetylation, demonstrating its great application potential as a food additive.


2021 ◽  
pp. 108201322110692
Author(s):  
Nispa Seetapan ◽  
Bootsrapa Leelawat ◽  
Nattawut Limparyoon ◽  
Rattana Yooberg

Rice noodles have been manufactured in the food industry using different extrusion methods, such as traditional and modern extrusions, which affect the noodle structure and qualities. Therefore, the effects of the extrusion process on qualities of rice noodles using the same blend of rice flour and crosslinked starch were evaluated. In this study, a capillary rheometer was used as an alternative approach to simulate the traditional extrusion method in which the noodles are obtained by continuously pressing the pregelatinized noodle dough through a die. For modern extrusion, a twin-screw extruder was employed to obtain the noodles in a one-step process. The optimal range of moisture content used in the formulation was studied. Upon cooking, the noodles showed a decrease in cooking time and cooking loss with increasing moisture content in the formulation. All cooked noodles showed comparable tensile strength, but those extruded by a twin-screw extruder had substantially greater elongation. Scanning electron micrographs revealed that the noodles prepared using the extruder had a denser starch matrix, while those obtained from a capillary rheometer showed the aggregation of starch fragments relevant to the existence of starch gelatinization endotherm from differential scanning calorimetry. This indicated that the extrusion process using the twin-screw extruder provided a more uniform starch transformation, i.e., more starch granule disruption and gelatinization, thus giving the noodles a more coherent structure and better extensibility after cooking. The obtained results suggested that different thermomechanical processes used in the noodle industry gave the extruded rice noodles different qualities respective to their different microstructures.


Crystals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 11
Author(s):  
Selma Erat ◽  
Artur Braun ◽  
Samed Çetinkaya ◽  
Saadet Yildirimcan ◽  
Ahmet Emre Kasapoğlu ◽  
...  

Intrinsic and dandelion-like microflower nano-rod structures of boron-doped ZnO thin films were synthesized with an ecofriendly and cost-effective chemical bath deposition technique from an aqueous solution of zinc nitrate hexahdyrate [Zn(NO3)2.6H2O] as a precursor solution and boric acid as a doping solution. The boron concentrations were 0.1, 0.3, 0.5, 1.0, 3.0, 5.0, and 7.0 by volume. Scanning electron micrographs showed that doping with boron appears to hinder the vertical alignment of crystallites. Additionally, independent hexagonal nano-rod structures were observed to coalesce together to form dandelion-like structures on the film’s surface. The atomic ratio of the elements was determined via the X-ray photoemission spectrum technique. There were no substantial changes in the vibration structure of the film upon doping in terms of the Raman spectra. The optical band gap of ZnO (3.28 eV) decreased with B doping. The band gap of the ZnO:B film varied between 3.18 and 3.22 eV. The activation energy of the ZnO was calculated as 0.051 eV, whereas that of the ZnO:B film containing 1.0% B was calculated as 0.013 eV at low temperatures (273–348 K), versus 0.072 eV and 0.183 eV at high temperatures (348–523 K), respectively. Consequently, it can be interpreted that the 1% B-doped ZnO, which has the lowest activation energy at both low and high temperatures, may find some application areas such as in sensors for gases and in solar cells.


2021 ◽  
Author(s):  
Octavi Camps-Font ◽  
Jorge Toledano-Serrabona ◽  
Ana Juiz-Camps ◽  
Rui Figueiredo ◽  
Cosme Gay-Escoda ◽  
...  

Abstract Implantoplasty (IP) is used in dental implants with peri-implantitis and aims to remove threads and polish rough surfaces in order to prevent bacterial colonization. As a result of this procedure, implant strength might be compromised. We tested 20 tapered screw-shaped Ti6Al4V dental implants with a simulated bone loss of 50%. Ten implants underwent IP and 10 served as controls. Surface topography (Sa, Sz, Ssk and Sdr) was analyzed with a confocal optical microscope. Subsequently, cyclic loads were applied with a servo-hydraulic mechanical testing machine (5x106 cycles at 15 Hz, between the maximal compression force - 529N in the IP group and 735N in the control group - and 10% of that force). We recorded the number of cycles until failure and the type of failure. Implant failure was analyzed by visual inspection and scanning electron microscopy. Implantoplasty reduced the median Sa from 1.76 (IQR=0.11) to 0.49 (IQR=0.16). The fatigue limits of the control and implantoplasty groups were 551 N and 529 N, respectively. The scanning electron micrographs showed fatigue striations indicating fatigue failure. The infinite life range of the dental implants evaluated was largely above the threshold of usual chewing forces. Implantoplasty seems to render a fairly smooth surface and has a limited impact upon fatigue resistance.


2021 ◽  
Author(s):  
James Lever ◽  
Susan Taylor ◽  
Garrett Hoch ◽  
Charles Daghlian

The long-accepted theory to explain why snow is slippery postulates self-lubrication: frictional heat from sliding melts and thereby lubricates the contacting snow grains. We recently published micro-scale interface observations that contradicted this explanation: contacting snow grains abraded and did not melt under a polyethylene slider, despite low friction values. Here we provide additional observational and theoretical evidence that abrasion can govern snow kinetic friction. We obtained coordinated infrared, visible-light and scanning-electron micrographs that confirm that the evolving shapes observed during our tribometer tests are contacting snow grains polished by abrasion, and that the wear particles can sinter together and fill the adjacent pore spaces. Furthermore, dry-contact abrasive wear reasonably predicts the evolution of snow-slider contact area and sliding-heat-source theory confirms that contact temperatures would not reach 0°C during our tribometer tests. Importantly, published measurements of interface temperatures also indicate that melting did not occur during field tests on sleds and skis. Although prevailing theory anticipates a transition from dry to lubricated contact along a slider, we suggest that dry-contact abrasion and heat flow can prevent this transition from occurring for snow-friction scenarios of practical interest.


Foods ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3029
Author(s):  
Hong-Ting Victor Lin ◽  
Po-Han Hou ◽  
Wen-Chieh Sung

We have investigated different properties (thickness, moisture loss, oil uptake, breaking force, color, puffing ratio during 0.5–5 min frying, microstructure, and sensory evaluation) of raw pork skins with varying thickness (2, 3, and 4 mm) after drying, intended as deep-fried snacks. We have found that the oil content, breaking force, and puffing ratio of fried pork skin with different raw skin thickness have no significant difference under similar water content (1.68–1.98 g/100 g wet weight basis, wb) after 3–5 min of deep-frying at 180 °C. Additionally, sensory score results have shown that fried pork skins with 4 mm raw skin thickness had lower flavor, texture, and overall acceptability than those with 2 mm and 3 mm raw skin thickness. Scanning electron micrographs (SEM) have revealed less holes and irregular and crack microstructure in fried pork skins with 4 mm raw skin thickness than in other groups. Different thickness of raw pork skins resulted in different effects in microstructure and influenced water evaporation and oil uptake of fried pork skin. Finally, we have proposed the kinetic equations of water loss and oil uptake of fried pork skins. Fried pork skin from raw skin thicker than 4 mm need frying at temperature higher than 180 °C to improve their puffing ratio and sensory acceptability.


Zootaxa ◽  
2021 ◽  
Vol 5074 (1) ◽  
pp. 1-66
Author(s):  
ANDRZEJ WOLSKI

Cylapini, as currently circumscribed, is a relatively small group of plant bugs currently comprising 17 genera and 65 species. Most representatives of the tribe are distributed in the New World (10 genera and 47 species) with other members occurring in the Afrotropical, Oriental, and Australian regions. They have primarily tropical and subtropical distributions with only a few members inhabiting temperate regions. This paper provides a taxonomic review of three of the New World Cylapini genera: Cylapinus Carvalho, 1986, Cylapoides Carvalho, 1952, and Peltidocylapus Poppius, 1909. Most species are diagnosed and redescribed. Eight new species are described as new: Cylapinus yasunagai sp. nov., Peltidocylapus calyciformis sp. nov., P. caudatus sp. nov., P. ecuadorensis sp. nov., P. pallidus sp. nov., P. parallelus sp. nov., P. simplex sp. nov., and P. spinosus sp. nov. Cylapus festinabundus Bergroth, 1922 is transferred to Peltidocylapus (comb. nov.). Illustrations of male genitalia, scanning electron micrographs of selected structures of certain species, and an identification key of the genera Cylapinus, Cylapoides and Peltidocylapus are provided. Female genitalia are described and illustrated for the first time for most genera of Cylapini. A cladistic analysis of the tribe based on 81 morphological characters is presented as a contribution to the understanding of the ingroup relationships of Cylapini and its relationships with other groups of Cylapinae. The analysis comprises 30 ingroup species and 15 outgroup species. Both equal- and implied weighting parsimony analyses were used in the phylogenetic reconstruction. This analysis was based solely on morphological characters because an insufficient number of specimens suitable for molecular studies were available for most taxa. The study confirmed a close affinity of the taxa currently included in Cylapini, but the tribe was rendered paraphyletic by inclusion of the tribe Vanniini. The grouping comprising both Cylapini + Vanniini and most of its subordinated clades received low nodal support. Both analyses recovered a decisively supported clade comprising the New World genera Amapacylapus, Cylapus, Peltidocylapus, and Valdasus which accommodate most of the Cylapini species, justifying the recognition of the Cylapus complex suggested by previous authors. The results presented here are discussed and compared with previous phylogenetic hypotheses based on different datasets.  


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7340
Author(s):  
Changzai Ren ◽  
Wenlong Wang ◽  
Dongliang Hua ◽  
Shuang Wu ◽  
Yonggang Yao

The preparation of high-performance green cementitious material from industrial solid waste is a feasible large-scale utilization approach for industrial solid waste. This work investigates the feasibility of using industrial solid wastes in a sulphoaluminate–magnesium–potassium–phosphate cementitious composite material (SAC-MKPC) clinker preparation and the influence of the calcination temperature and clinker ingredients on the hydration behavior and mechanisms of the SAC-MKPC with a Mg/P ratio of 5. The results show that the novel SAC-MKPC that was prepared from aluminum slag, carbide slag, coal gangue, and magnesium desulfurization slag was composed mainly of mineral MgO, C4A3S¯, and C2S and the calcination temperature of the main mineral phases was 1250–1350 °C. The solid-waste-based SAC-MKPC had better mechanical properties and excellent water resistance compared with the MKPC. The optimal compressive strength reached 35.2, 70.9, 84.1, 87.7, and 101.6 MPa at 2 h, 1 d, 3 d, 7 d, and 28 d of hydration, respectively. The X-ray diffraction spectra and scanning electron micrographs of the hydration products of the SAC-MKPC clinker showed that AFt and K-struvite crystals coexisted and adhered to form a dense structure. This work provides an innovative idea to produce green cementitious material using industrial solid wastes and may promote the sustainable development of the power and mining industries.


Sign in / Sign up

Export Citation Format

Share Document