contaminated site
Recently Published Documents


TOTAL DOCUMENTS

1091
(FIVE YEARS 266)

H-INDEX

57
(FIVE YEARS 7)

2022 ◽  
Vol 423 ◽  
pp. 127049
Author(s):  
Sujithkumar Surendran Nair ◽  
Christopher DeRolph ◽  
Mark J. Peterson ◽  
Ryan A. McManamay ◽  
Teresa Mathews

2022 ◽  
Vol 9 ◽  
Author(s):  
Andrew D. Putt ◽  
Erin R. Kelly ◽  
Kenneth A. Lowe ◽  
Miguel Rodriguez ◽  
Terry C. Hazen

Penetration testing is a popular and instantaneous technique for subsurface mapping, contaminant tracking, and the determination of soil characteristics. While the small footprint and reproducibility of cone penetrometer testing makes it an ideal method for in-situ subsurface investigations at contaminated sites, the effects to local shallow groundwater wells and measurable influence on monitoring networks common at contaminated sites is unknown. Physical and geochemical parameters associated with cone penetrometer testing were measured from a transect of shallow groundwater monitoring wells adjacent to penetrometer testing. For wells screened above the depth of cone refusal, the physical advancement and retraction of the cone had a significant effect (p < 0.01) on water level for several pushes within 10 meters of a monitoring well, and a measured increase in specific conductivity. No effect on geochemistry or water level was observed in continuous monitoring data from wells screened below the depth of cone refusal, but variability in specific conductivity from these wells during penetration testing was only a fraction of the natural variation measured during precipitation events. Continuous measurements of specific conductivity and water level demonstrated that the effects of penetration testing have limited spatial and temporal distributions with a null effect post-testing.


Author(s):  
Sinchan Banerjee ◽  
Anna Bedics ◽  
Péter Harkai ◽  
Balázs Kriszt ◽  
Nagaraju Alpula ◽  
...  

AbstractTo develop effective bioremediation strategies, it is always important to explore autochthonous microbial community diversity using substrate-specific enrichment. The primary objective of this present study was to reveal the diversity of aerobic xylene-degrading bacteria at a legacy BTEX-contaminated site where xylene is the predominant contaminant, as well as to identify potential indigenous strains that could effectively degrade xylenes, in order to better understand the underlying facts about xylene degradation using a multi-omics approach. Henceforward, parallel aerobic microcosms were set up using different xylene isomers as the sole carbon source to investigate evolved bacterial communities using both culture-dependent and independent methods. Research outcome showed that the autochthonous community of this legacy BTEX-contaminated site has the capability to remove all of the xylene isomers from the environment aerobically employing different bacterial groups for different xylene isomers. Interestingly, polyphasic analysis of the enrichments disclose that the community composition of the o-xylene-degrading enrichment community was utterly distinct from that of the m- and p-xylene-degrading enrichments. Although in each of the enrichments Pseudomonas and Acidovorax were the dominant genera, in the case of o-xylene-degrading enrichment Rhodococcus was the main player. Among the isolates, two Hydogenophaga strains, belonging to the same genomic species, were obtained from p-xylene-degrading enrichment, substantially able to degrade aromatic hydrocarbons including xylene isomers aerobically. Comparative whole-genome analysis of the strains revealed different genomic adaptations to aromatic hydrocarbon degradation, providing an explanation on their different xylene isomer-degrading abilities.


Author(s):  
D. S. McLagan ◽  
L. Schwab ◽  
J. G. Wiederhold ◽  
L. Chen ◽  
J. Pietrucha ◽  
...  

A holistic multi-analyses (led by Hg stable isotope analysis), multi-media, multi-site approach to improving contaminated site Hg geochemistry, particularly process tracing.


2022 ◽  
Vol 302 ◽  
pp. 113944
Author(s):  
Pauline Kessouri ◽  
Tim Johnson ◽  
Frederick D. Day-Lewis ◽  
Chen Wang ◽  
Dimitrios Ntarlagiannis ◽  
...  

2021 ◽  
Vol 9 (2) ◽  
pp. 7-12
Author(s):  
Abdulrahman Abdulhamid Arabo ◽  
Raji Arabi Bamanga ◽  
Mujiburrahman Fadilu ◽  
Musa Abubakar ◽  
Fatima Abdullahi Shehu ◽  
...  

This study aimed to isolate and identify biosurfactant producing and diesel alkanes degrading bacteria. For this reason, bacteria isolated from the diesel contaminated site were screened for their potential to produce biosurfactants and degrade diesel alkanes. Primary selection of diesel degraders was carried out by using conventional enrichment culture technique where 12 bacterial strains were isolated based on their ability to grow on minimal media supplemented with diesel as sole carbon source, which was followed by qualitative screening methods for potential biosurfactant production. Isolate B11 was the only candidate that shows positive signs for drop collapse, foaming, haemolytic test, oil displacement of more than 22 ± 0.05 mm, and emulsification (E24) of 14 ± 0.30%. The effect of various culture parameters (incubation time, diesel concentration, nitrogen source, pH and temperature) on biodegradation of diesel was evaluated. The optimum incubation time was confirmed to be 120 days for isolates B11, the optimum PH was confirmed as 8.0 for the isolate, Similarly, the optimum temperature was confirmed as 35oC. In addition, diesel oil was used as the sole carbon source for the isolates. The favourable diesel concentration was 12.5 % (v/v) for the isolate. The isolate has shown degradative ability towards Tridecane (C13), dodecane, 2, 6, 10-trimethyl- (C15), Tetradecane (C14), 2,6,10-Trimethyltridecane (C16), Pentadecane (C15). It degraded between 0.27% - 9.65% individual diesel oil alkanes. The strain has exhibited the potential of degrading diesel oil n-alkanes and was identified as Alcaligenes species strain B11 (MZ027604) using the 16S rRNA sequencing.


2021 ◽  
Vol 9 ◽  
Author(s):  
Liang Wang ◽  
Ying Cheng ◽  
Ravi Naidu ◽  
Mark Bowman

Once petroleum hydrocarbons (PHs) are released into the soil, the interaction between PHs and soil media is dependent not only upon the soil properties but also on the characteristics of PHs. In this study, the key factors influencing the interactions between PHs and soil media are discussed. The key factors include: 1) the characteristics of PHs, such as volatility and viscosity; and 2) soil properties, such as porosity, hydraulic properties and water status, and organic matter; and 3) atmospheric circumstances, such as humidity and temperature. These key factors can be measured either ex-situ using conventional laboratory methods, or in situ using portable or handheld instruments. This study overviews the current ex/in situ techniques for measuring the listed key factors for PH contaminated site assessments. It is a tendency to apply in situ methods for PH contaminated site characterisation. Furthermore, handheld/portable Fourier transform infrared spectroscopy (FTIR) instrument provides tremendous opportunities for in-field PH contaminated site assessment. This study also reviewed the non-destructive FTIR spectroscopy analysis coupling with handheld FTIR for in-field PH contaminated site characterisation, including determining the concentration of total PH, dominant PH fractions and soil key properties for PH transport modelling.


Author(s):  
Guilherme R. Lotufo ◽  
Philip T. Gidley ◽  
Andrew D. McQueen ◽  
David W. Moore ◽  
Deborah A. Edwards ◽  
...  

AbstractThis is the first investigation of the bioavailability of PCBs associated with paint chips (PC) dispersed in sediment. Bioavailability of PCB-containing PC in sediment was measured using ex situ polyethylene passive samplers (PS) and compared to that of PCBs from field-collected sediments. PC were mixed in freshwater sediment from a relatively uncontaminated site with no known PCB contamination sources and from a contaminated site with non-paint PCB sources. PC < 0.045 mm generated concentrations in the PS over one order of magnitude higher than coarser chips. The bioavailable fraction was represented by the polymer-sediment accumulation factor (PSAF), defined as the ratio of the PCB concentrations in the PS and organic carbon normalized sediment. The PSAF was similar for both field sediments. The PSAFs for the field sediments were ~ 50–60 and ~ 5 times higher than for the relatively uncontaminated sediment amended with PC for the size fractions 0.25–0.3 mm and < 0.045 mm, respectively. These results indicate much lower bioavailability for PCBs associated with PC compared to PCBs associated with field-collected sediment. Such information is essential for risk assessment and remediation decision-making for sites where contamination from non-paint PCBs sources is co-located with PCB PC.


Author(s):  
U. Shehu ◽  
F. A. Ahmad ◽  
F. Yusuf ◽  
F. Muhammad ◽  
H. M. Yakasai

Microbial biodegradation of polycyclic aromatic hydrocarbons (PAHs) like Anthracene, represent an efficient, time, and cost-effective way for bioremediation of the polluted environment. This study was aimed at isolating, identifying and characterizing bacteria with potential to degrade and utilize anthracene as a sole carbon source. A bacteria was isolated from oil spilled contaminated site located in Kano, using an enrichment method on mineral salt media (MSM) following serial dilution (10-1-10-6). Characterization was done by studying the effects of temperature and pH on mineral salt media (MSM) containing anthracene. The isolate was then identified morphologically, biochemically and molecularly based on 16S rRNA partial gene sequence analysis. The morphological and microscopic examination of the isolate from this research shows that the isolate was creamy in color, motile, gram negative, short rod and non-spore forming respectively. The biochemical test of the isolate was found to be positive for these parameters (methyl red, catalase, motility, indole and urease) and negative for (citrate and oxidase). The 16S rRNA sequence and Phylogenetic analysis using neighbor joining tree and 1000 boos trap revealed that, the isolate was closely related (on the same clade) to Proteus vulgaris with accession number MW766369. Characterization was done by studying the effects of temperature and pH. The isolated bacterium was optimal at a temperature of 35ºC and pH 7.5. This isolate is a promising strain that could be used in bioremediation of polycylic aromatic hydrocarbons polluted environment.


Sign in / Sign up

Export Citation Format

Share Document