scholarly journals Halobacillus campisalis sp. nov., containing meso-diaminopimelic acid in the cell-wall peptidoglycan, and emended description of the genus Halobacillus

2007 ◽  
Vol 57 (9) ◽  
pp. 2021-2025 ◽  
Author(s):  
Jung-Hoon Yoon ◽  
So-Jung Kang ◽  
Yong-Taek Jung ◽  
Tae-Kwang Oh

A Gram-positive or variable, motile and coccoid or oval-shaped bacterial strain, ASL-17T, was isolated from a marine solar saltern of the Yellow Sea in Korea and its exact taxonomic position was investigated by a polyphasic approach. Strain ASL-17T grew optimally at pH 7.0–8.0 and 37 °C. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain ASL-17T is most closely affiliated phylogenetically to the genus Halobacillus. Strain ASL-17T exhibited 16S rRNA gene sequence similarity values of 97.7–98.6 % to the type strains of recognized Halobacillus species. Interestingly, strain ASL-17T had cell-wall peptidoglycan based on meso-diaminopimelic acid, unlike other Halobacillus species. It contained MK-7 as the predominant menaquinone. The major fatty acids were anteiso-C15 : 0, anteiso-C17 : 0 and iso-C16 : 0. The DNA G+C content was 42.1 mol%. DNA–DNA relatedness data and differential phenotypic properties demonstrated that strain ASL-17T can be differentiated from recognized Halobacillus species. On the basis of phenotypic, chemotaxonomic, phylogenetic and genetic data, strain ASL-17T represents a novel species of the genus Halobacillus, for which the name Halobacillus campisalis sp. nov. is proposed. The type strain is ASL-17T (=KCTC 13144T =CCUG 54360T).

2007 ◽  
Vol 57 (9) ◽  
pp. 2102-2105 ◽  
Author(s):  
Jung-Hoon Yoon ◽  
Mi-Hwa Lee ◽  
So-Jung Kang ◽  
Tae-Kwang Oh

A Gram-negative, motile, rod-shaped, Marinobacter-like bacterial strain, ISL-40T, was isolated from a marine solar saltern of the Yellow Sea in Korea. The taxonomic position of the novel strain was investigated using a polyphasic approach. Strain ISL-40T grew optimally at pH 7.0–8.0 and at 30 °C. It contained Q-9 as the predominant ubiquinone. The major fatty acids were C16 : 0, C16 : 1 ω7c and/or iso-C15 : 0 2-OH and 10-methyl C16 : 0. The DNA G+C content was 58.1 mol%. A phylogenetic analysis based on 16S rRNA gene sequences showed that strain ISL-40T belongs to the genus Marinobacter. Strain ISL-40T exhibited 16S rRNA gene sequence similarity values of 93.5–96.4 % to the type strains of recognized Marinobacter species. The differential phenotypic properties and phylogenetic distinctiveness of strain ISL-40T revealed that it is separate from recognized Marinobacter species. On the basis of phenotypic, phylogenetic and genetic data, therefore, strain ISL-40T represents a novel species of the genus Marinobacter, for which the name Marinobacter salicampi sp. nov. is proposed. The type strain is ISL-40T (=KCTC 12972T=CCUG 54357T).


Author(s):  
Ho-Won Chang ◽  
Young-Do Nam ◽  
Hyuk-Yong Kwon ◽  
Ja Ryeong Park ◽  
Jung-Sook Lee ◽  
...  

A moderately halophilic, aerobic, Gram-negative bacterium was isolated from a tidal flat area of Dae-Chun, Chung-Nam, Korea. The strain, designated mano11T, comprised rod-shaped cells that were motile by means of polar flagella. It grew with 3–12 % NaCl and at 4–37 °C and pH 5.3–9.3. The predominant menaquinone present in this strain was MK-7 and diaminopimelic acid was not found in the cell-wall peptidoglycan. A phylogenetic analysis based on 16S rRNA gene sequences showed that strain mano11T belongs to the genus Marinobacterium. Strain mano11T exhibited 92.8–98.3 % 16S rRNA gene sequence similarity when compared with the type strains of three other species of the genus Marinobacterium. DNA–DNA hybridization between strain mano11T and Marinobacterium georgiense DSM 11526T, its closest relative in terms of 16S rRNA gene sequence similarity, was 13 %. On the basis of the phenotypic, genetic and phylogenetic data, strain mano11T represents a novel species of the genus Marinobacterium, for which the name Marinobacterium halophilum sp. nov. is proposed. The type strain is mano11T (=KCTC 12240T=DSM 17586T).


2010 ◽  
Vol 60 (2) ◽  
pp. 434-438 ◽  
Author(s):  
Jung-Hoon Yoon ◽  
So-Jung Kang ◽  
Yong-Taek Jung ◽  
Mi-Hwa Lee ◽  
Tae-Kwang Oh

A Gram-stain-positive, motile, rod-shaped bacterial strain, ISL-17T, was isolated from a marine solar saltern of the Yellow Sea, Korea, and its taxonomic position was investigated by means of a polyphasic study. Strain ISL-17T grew optimally at pH 8.5–9.0, at 37 °C and in the presence of approximately 10 % (w/v) NaCl. It contained meso-diaminopimelic acid as the diagnostic diamino acid in the peptidoglycan, MK-7 as the predominant menaquinone and iso-C15 : 0, anteiso-C15 : 0 and iso-C16 : 0 as the major fatty acids. The DNA G+C content was 48.1 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain ISL-17T fell within the genus Alkalibacillus, clustering with Alkalibacillus salilacus BH163T with a bootstrap resampling value of 100 %. Strain ISL-17T exhibited 98.2 % 16S rRNA gene sequence similarity to A. salilacus BH163T and 95.8–96.5 % similarity to the type strains of the other Alkalibacillus species. The mean DNA–DNA relatedness value between strain ISL-17T and A. salilacus KCTC 3916T was 19 %. The phenotypic properties of strain ISL-17T, together with its phylogenetic and genetic distinctiveness, enable this strain to be differentiated from recognized Alkalibacillus species. On the basis of phenotypic, phylogenetic and genetic data, strain ISL-17T represents a novel species within the genus Alkalibacillus, for which the name Alkalibacillus flavidus sp. nov. is proposed; the type strain is ISL-17T (=KCTC 13258T =CCUG 56753T).


2015 ◽  
Vol 65 (Pt_10) ◽  
pp. 3439-3446 ◽  
Author(s):  
Yong-Taek Jung ◽  
Jung-Sook Lee ◽  
Jung-Hoon Yoon

A Gram-strain-negative, coccoid or oval-shaped, non-motile bacterial strain, designated MDM-1T, was isolated from a tidal-flat sediment on the Korean peninsula. Strain MDM-1T was found to grow optimally at pH 7.0–8.0, at 30 °C and in the presence of 2–3 % (w/v) NaCl. A neighbour-joining phylogenetic tree based on 16S rRNA gene sequences showed that strain MDM-1T falls within the clade comprising species of the genus Algoriphagus, clustering with the type strains of Algoriphagus halophilus, A. lutimaris, A. chungangensis and A. machipongonensis, with which it exhibited 97.2–98.5 % 16S rRNA gene sequence similarity. Sequence similarities to the type strains of the other recognized species of the genus Algoriphagus were 92.8–97.6 %. Strain MDM-1T was found to contain MK-7 as the predominant menaquinone and iso-C15 : 0 and summed feature 3 (C16 : 1ω6c and/or C16 : 1ω7c) as the major fatty acids. The major polar lipids were identified as phosphatidylcholine, phosphatidylethanolamine and two unidentified lipids. The DNA G+C content of strain MDM-1T was determined to be 42.7 mol% and the mean DNA–DNA relatedness with A. halophilus KCTC 12051T, A. lutimaris S1-3T, A. chungangensis KCTC 23759T, A. machipongonensis DSM 24695T and A. ratkowskyi CIP 107452T was 19.7–5.2 %. Differential phenotypic properties, together with the phylogenetic and genetic distinctiveness, revealed that strain MDM-1T is distinguishable from recognized species of the genus Algoriphagus. On the basis of the data presented, strain MDM-1T is proposed to represent a novel species of the genus Algoriphagus, for which the name Algoriphagus aestuarii sp. nov. is proposed. The type strain is MDM-1T ( = KCTC 42199T = NBRC 110552T).


2007 ◽  
Vol 57 (10) ◽  
pp. 2365-2369 ◽  
Author(s):  
Jung-Hoon Yoon ◽  
Seo-Youn Jung ◽  
So-Jung Kang ◽  
Tae-Kwang Oh

A Gram-negative, non-motile, rod-shaped, Microbulbifer-like bacterial strain, ISL-39T, was isolated from a marine solar saltern of the Yellow Sea in Korea and was subjected to a polyphasic taxonomic investigation. Strain ISL-39T grew optimally at pH 7.0–8.0 and 37 °C. It contained Q-8 as the predominant ubiquinone and iso-C15 : 0, C16 : 0 and iso-C17 : 0 as the major fatty acids. The DNA G+C content was 57.7 mol%. A phylogenetic analysis based on 16S rRNA gene sequences showed that strain ISL-39T belonged to the genus Microbulbifer. Strain ISL-39T exhibited 16S rRNA gene sequence similarity values of 94.7–97.5 % with respect to the type strains of four recognized Microbulbifer species. DNA–DNA relatedness data and the differential phenotypic properties and phylogenetic distinctiveness of ISL-39T make this strain distinguishable from the recognized Microbulbifer species. On the basis of the phenotypic, phylogenetic and genetic data, strain ISL-39T represents a novel species of the genus Microbulbifer, for which the name Microbulbifer celer sp. nov. is proposed. The type strain is ISL-39T (=KCTC 12973T=CCUG 54356T).


2010 ◽  
Vol 60 (1) ◽  
pp. 191-195 ◽  
Author(s):  
Jung-Hoon Yoon ◽  
So-Jung Kang ◽  
Sooyeon Park ◽  
Ki-Hoon Oh ◽  
Tae-Kwang Oh

A Gram-negative, motile and pleomorphic bacterial strain, SMK-146T, was isolated from a tidal flat sediment of the Yellow Sea, Korea, and its taxonomic position was investigated. Strain SMK-146T grew optimally at pH 7.0–8.0 and 30 °C. It contained Q-10 as the predominant ubiquinone and C18 : 1 ω7c and 11-methyl C18 : 1 ω7c as the major fatty acids. The major polar lipids were phosphatidylcholine, phosphatidylglycerol and phosphatidylethanolamine. The DNA G+C content was 68.4 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain SMK-146T belongs to the genus Jannaschia. Strain SMK-146T exhibited 16S rRNA gene sequence similarity values of 95.3–97.0 % to the type strains of the five recognized Jannaschia species. The mean DNA–DNA relatedness value between strain SMK-146T and Jannaschia seosinensis KCCM 42114T, the closest phylogenetic neighbour, was 17 %. Differential phenotypic properties also revealed that strain SMK-146T differs from the recognized Jannaschia species. On the basis of phenotypic, phylogenetic and genetic data, strain SMK-146T represents a novel species of the genus Jannaschia, for which the name Jannaschia seohaensis sp. nov. is proposed. The type strain is SMK-146T (=KCTC 22172T =CCUG 55326T).


Author(s):  
Jung-Hoon Yoon ◽  
So-Jung Kang ◽  
Peter Schumann ◽  
Tae-Kwang Oh

A Gram-variable, motile and rod-shaped bacterial strain, ASL-1T, was isolated from a marine saltern located on the coast of the Yellow Sea, Korea. A neighbour-joining phylogenetic tree based on 16S rRNA gene sequences showed that strain ASL-1T clustered with Jeotgalibacillus alimentarius YKJ-13T and that this cluster joined the clade comprising the type strains of two Marinibacillus species. Strain ASL-1T exhibited 16S rRNA gene sequence similarity values of 97.3 % to J. alimentarius YKJ-13T and 96.5 % to the type strains of Marinibacillus marinus and Marinibacillus campisalis. The chemotaxonomic properties of strain ASL-1T were similar to those of one or two of the genera Jeotgalibacillus and Marinibacillus. The peptidoglycan type was A1α linked directly through l-lysine as the diamino acid. Strain ASL-1T contained MK-7 as the predominant menaquinone with the presence of a significant amount of MK-8. The predominant fatty acid was anteiso-C15 : 0. The DNA G+C content was 42.9 mol%. Differential phenotypic properties, together with the phylogenetic and genetic distinctiveness, revealed that strain ASL-1T could be differentiated from J. alimentarius and the two Marinibacillus species. On the basis of the data presented, strain ASL-1T represents a novel species within the genus Jeotgalibacillus, for which the name Jeotgalibacillus salarius sp. nov. is proposed. The type strain is ASL-1T (=KCTC 13257T=CCUG 56751T). It is also proposed that Marinibacillus marinus and Marinibacillus campisalis be reclassified as Jeotgalibacillus marinus comb. nov. (type strain 581T=DSM 1297T=ATCC 29841T=CCUG 28884T=CIP 103308T=LMG 6930T) and Jeotgalibacillus campisalis comb. nov. (type strain SF-57T=KCCM 41644T=JCM 11810T), respectively.


2007 ◽  
Vol 57 (12) ◽  
pp. 2738-2742 ◽  
Author(s):  
Jung-Hoon Yoon ◽  
Seo-Youn Jung ◽  
So-Jung Kang ◽  
Yong-Taek Jung ◽  
Tae-Kwang Oh

A Gram-negative, non-motile, rod-shaped bacterium, strain ISL-6T, phenotypically resembling members of the genus Salegentibacter, was isolated from a marine solar saltern of the Yellow Sea in Korea and subjected to a polyphasic taxonomic investigation. Strain ISL-6T grew optimally at pH 7.0–8.0 and 30 °C and in the presence of 8 % (w/v) NaCl. It contained MK-6 as the predominant menaquinone. The major fatty acids were iso-C15 : 0 and anteiso-C15 : 0. The DNA G+C content was 37.5 mol%. A phylogenetic analysis based on 16S rRNA gene sequences showed that strain ISL-6T belonged to the genus Salegentibacter. Strain ISL-6T exhibited 16S rRNA gene sequence similarity values of 92.0–98.6 % with respect to the type strains of recognized Salegentibacter species. Low DNA–DNA relatedness values, differential phenotypic properties and phylogenetic distinctiveness demonstrated that strain ISL-6T is distinguishable from the recognized Salegentibacter species. Therefore strain ISL-6T represents a novel species of the genus Salegentibacter, for which the name Salegentibacter salarius sp. nov. is proposed. The type strain is ISL-6T (=KCTC 12974T =CCUG 54355T).


2010 ◽  
Vol 60 (5) ◽  
pp. 1073-1078 ◽  
Author(s):  
Shu-Kun Tang ◽  
Yun Wang ◽  
Tong-Wei Guan ◽  
Jae-Chan Lee ◽  
Chang-Jin Kim ◽  
...  

A novel halophilic actinomycete, designated strain YIM 93223T, was isolated from a salt lake in Xinjiang Province, north-west China, and was subjected to a polyphasic taxonomic study. The isolate grew at 25–45 °C, at pH 6–8 and in the presence of 1–15 % (w/v) NaCl; no growth was observed in the absence of NaCl. Strain YIM 93223T contained meso-diaminopimelic acid, glutamic acid and alanine as cell-wall amino acids, and glucose and galactose as major whole-cell-wall sugars. Major fatty acids were iso-C16 : 0, C16 : 0 and C16 : 1 ω7c/iso-C15 : 0 2-OH. MK-8(H4) was the predominant menaquinone. The genomic DNA G+C content was 66.1 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain YIM 93223T belongs to the genus Amycolatopsis. It shared highest 16S rRNA gene sequence similarity with Amycolatopsis palatopharyngis 1BDZT (96.6 %) and Amycolatopsis marina Ms392AT (96.4 %), but lower values (94.5–96.2 %) with the type strains of other recognized species of the genus Amycolatopsis. On the basis of the data from this polyphasic study, strain YIM 93223T is considered to represent a novel species of the genus Amycolatopsis, for which the name Amycolatopsis halophila sp. nov. is proposed. The type strain is YIM 93223T (=DSM 45216T =KCTC 19403T).


2004 ◽  
Vol 54 (5) ◽  
pp. 1799-1803 ◽  
Author(s):  
Jung-Hoon Yoon ◽  
Soo-Hwan Yeo ◽  
In-Gi Kim ◽  
Tae-Kwang Oh

Two Gram-negative, motile, non-spore-forming and slightly halophilic rods (strains SW-145T and SW-156T) were isolated from sea water of the Yellow Sea in Korea. Strains SW-145T and SW-156T grew optimally at 37 and 30–37 °C, respectively, and in the presence of 2–6 % (w/v) NaCl. Strains SW-145T and SW-156T were chemotaxonomically characterized as having ubiquinone-9 as the predominant respiratory lipoquinone and C16 : 0, C18 : 1 ω9c, C16 : 1 ω9c and C12 : 0 3-OH as the major fatty acids. The DNA G+C contents of strains SW-145T and SW-156T were 58 and 57 mol%, respectively. Phylogenetic analyses based on 16S rRNA gene sequences showed that strains SW-145T and SW-156T fell within the evolutionary radiation enclosed by the genus Marinobacter. The 16S rRNA gene sequences of strains SW-145T and SW-156T were 94·8 % similar. Strains SW-145T and SW-156T exhibited 16S rRNA gene sequence similarity levels of 94·3–98·1 and 95·4–97·7 %, respectively, with respect to the type strains of all Marinobacter species. Levels of DNA–DNA relatedness, together with 16S rRNA gene sequence similarity values, indicated that strains SW-145T and SW-156T are members of two species that are distinct from seven Marinobacter species with validly published names. On the basis of phenotypic properties and phylogenetic and genotypic distinctiveness, strains SW-145T (=KCTC 12185T=DSM 16070T) and SW-156T (=KCTC 12184T=DSM 16072T) should be placed in the genus Marinobacter as the type strains of two distinct novel species, for which the names Marinobacter flavimaris sp. nov. and Marinobacter daepoensis sp. nov. are proposed.


Sign in / Sign up

Export Citation Format

Share Document