scholarly journals Algoriphagus aestuarii sp. nov., a member of the Cyclobacteriaceae isolated from a tidal-flat sediment of the Yellow Sea in Korea

2015 ◽  
Vol 65 (Pt_10) ◽  
pp. 3439-3446 ◽  
Author(s):  
Yong-Taek Jung ◽  
Jung-Sook Lee ◽  
Jung-Hoon Yoon

A Gram-strain-negative, coccoid or oval-shaped, non-motile bacterial strain, designated MDM-1T, was isolated from a tidal-flat sediment on the Korean peninsula. Strain MDM-1T was found to grow optimally at pH 7.0–8.0, at 30 °C and in the presence of 2–3 % (w/v) NaCl. A neighbour-joining phylogenetic tree based on 16S rRNA gene sequences showed that strain MDM-1T falls within the clade comprising species of the genus Algoriphagus, clustering with the type strains of Algoriphagus halophilus, A. lutimaris, A. chungangensis and A. machipongonensis, with which it exhibited 97.2–98.5 % 16S rRNA gene sequence similarity. Sequence similarities to the type strains of the other recognized species of the genus Algoriphagus were 92.8–97.6 %. Strain MDM-1T was found to contain MK-7 as the predominant menaquinone and iso-C15 : 0 and summed feature 3 (C16 : 1ω6c and/or C16 : 1ω7c) as the major fatty acids. The major polar lipids were identified as phosphatidylcholine, phosphatidylethanolamine and two unidentified lipids. The DNA G+C content of strain MDM-1T was determined to be 42.7 mol% and the mean DNA–DNA relatedness with A. halophilus KCTC 12051T, A. lutimaris S1-3T, A. chungangensis KCTC 23759T, A. machipongonensis DSM 24695T and A. ratkowskyi CIP 107452T was 19.7–5.2 %. Differential phenotypic properties, together with the phylogenetic and genetic distinctiveness, revealed that strain MDM-1T is distinguishable from recognized species of the genus Algoriphagus. On the basis of the data presented, strain MDM-1T is proposed to represent a novel species of the genus Algoriphagus, for which the name Algoriphagus aestuarii sp. nov. is proposed. The type strain is MDM-1T ( = KCTC 42199T = NBRC 110552T).

2010 ◽  
Vol 60 (1) ◽  
pp. 191-195 ◽  
Author(s):  
Jung-Hoon Yoon ◽  
So-Jung Kang ◽  
Sooyeon Park ◽  
Ki-Hoon Oh ◽  
Tae-Kwang Oh

A Gram-negative, motile and pleomorphic bacterial strain, SMK-146T, was isolated from a tidal flat sediment of the Yellow Sea, Korea, and its taxonomic position was investigated. Strain SMK-146T grew optimally at pH 7.0–8.0 and 30 °C. It contained Q-10 as the predominant ubiquinone and C18 : 1 ω7c and 11-methyl C18 : 1 ω7c as the major fatty acids. The major polar lipids were phosphatidylcholine, phosphatidylglycerol and phosphatidylethanolamine. The DNA G+C content was 68.4 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain SMK-146T belongs to the genus Jannaschia. Strain SMK-146T exhibited 16S rRNA gene sequence similarity values of 95.3–97.0 % to the type strains of the five recognized Jannaschia species. The mean DNA–DNA relatedness value between strain SMK-146T and Jannaschia seosinensis KCCM 42114T, the closest phylogenetic neighbour, was 17 %. Differential phenotypic properties also revealed that strain SMK-146T differs from the recognized Jannaschia species. On the basis of phenotypic, phylogenetic and genetic data, strain SMK-146T represents a novel species of the genus Jannaschia, for which the name Jannaschia seohaensis sp. nov. is proposed. The type strain is SMK-146T (=KCTC 22172T =CCUG 55326T).


2007 ◽  
Vol 57 (2) ◽  
pp. 332-336 ◽  
Author(s):  
Seo-Youn Jung ◽  
Yong-Taek Jung ◽  
Tae-Kwang Oh ◽  
Jung-Hoon Yoon

A Gram-negative, motile, pale-yellow-pigmented, oval-shaped bacterial strain, DF-42T, was isolated from a tidal flat sediment in Korea. Strain DF-42T grew optimally at 25–30 °C and in the presence of 2–3 % (w/v) NaCl. It contained Q-8 as the predominant ubiquinone and C16 : 0, C18 : 1 ω7c and summed feature 3 (C16 : 1 ω7c and/or iso-C15 : 0 2-OH) as the major fatty acids. The DNA G+C content was 48.3 mol%. Phylogenetic trees based on 16S rRNA gene sequences showed that strain DF-42T falls within the evolutionary radiation enclosed by the genus Photobacterium. Strain DF-42T exhibited 16S rRNA gene sequence similarity values of 93.8–97.9 % to the type strains of Photobacterium species with validly published names. DNA–DNA relatedness data and differential phenotypic properties made it possible to categorize strain DF-42T as representing a species that is separate from previously described Photobacterium species. The name Photobacterium lutimaris sp. nov. is proposed, with strain DF-42T (=KCTC 12723T=JCM 13586T) as the type strain.


2010 ◽  
Vol 60 (5) ◽  
pp. 1177-1181 ◽  
Author(s):  
Yong-Taek Jung ◽  
Bong-Hee Kim ◽  
Tae-Kwang Oh ◽  
Jung-Hoon Yoon

A Gram-negative-staining, non-motile and rod-shaped bacterial strain, HD-43T, was isolated from a tidal flat sediment collected from Hwang-do, an island of Korea. Strain HD-43T grew optimally at pH 7.0–8.0, at 30 °C and in the presence of 2 % (w/v) NaCl. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain HD-43T clustered with Pseudoruegeria aquimaris SW-255T. It exhibited 96.6 % 16S rRNA gene sequence similarity and 79.4 % gyrB sequence similarity with P. aquimaris SW-255T. Strain HD-43T contained Q-10 as the predominant ubiquinone and C18 : 1 ω7c as the major fatty acid. The major polar lipids were phosphatidylcholine, phosphatidylglycerol, phosphatidylethanolamine, an unidentified aminolipid, an unidentified glycolipid and an unidentified lipid. The DNA G+C content was 73.5 mol%. The mean DNA–DNA relatedness between strain HD-43T and P. aquimaris SW-255T was 5 %. Differential phenotypic properties demonstrated that strain HD-43T is clearly distinguishable from P. aquimaris. On the basis of phenotypic, chemotaxonomic and phylogenetic data, strain HD-43T is considered to represent a novel species of the genus Pseudoruegeria, for which the name Pseudoruegeria lutimaris sp. nov. is proposed. The type strain is HD-43T (=KCTC 22690T =CCUG 57754T).


2005 ◽  
Vol 55 (3) ◽  
pp. 1167-1170 ◽  
Author(s):  
Jung-Hoon Yoon ◽  
Kook Hee Kang ◽  
Soo-Hwan Yeo ◽  
Tae-Kwang Oh

A Gram-negative, non-spore-forming, yellow-pigmented, slightly halophilic bacterial strain, SW-109T, was isolated from a tidal flat of the Yellow Sea in Korea, and subjected to a polyphasic taxonomic study. This isolate did not produce bacteriochlorophyll a and contained ubiquinone-10 as the predominant respiratory lipoquinone and C18 : 1 ω7c as the major fatty acid. The DNA G+C content was 60·3 mol%. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain SW-109T is phylogenetically affiliated to the genus Erythrobacter of the family Sphingomonadaceae. Strain SW-109T exhibited levels of 16S rRNA gene sequence similarity to the type strains of Erythrobacter species of 94·0–96·3 %, making it possible to categorize strain SW-109T as a species that is separate from previously recognized Erythrobacter species. On the basis of its phenotypic properties and phylogenetic distinctiveness, SW-109T (=KCTC 12311T=JCM 12599T) was classified as the type strain of a novel Erythrobacter species, for which the name Erythrobacter luteolus sp. nov. is proposed.


2007 ◽  
Vol 57 (9) ◽  
pp. 2102-2105 ◽  
Author(s):  
Jung-Hoon Yoon ◽  
Mi-Hwa Lee ◽  
So-Jung Kang ◽  
Tae-Kwang Oh

A Gram-negative, motile, rod-shaped, Marinobacter-like bacterial strain, ISL-40T, was isolated from a marine solar saltern of the Yellow Sea in Korea. The taxonomic position of the novel strain was investigated using a polyphasic approach. Strain ISL-40T grew optimally at pH 7.0–8.0 and at 30 °C. It contained Q-9 as the predominant ubiquinone. The major fatty acids were C16 : 0, C16 : 1 ω7c and/or iso-C15 : 0 2-OH and 10-methyl C16 : 0. The DNA G+C content was 58.1 mol%. A phylogenetic analysis based on 16S rRNA gene sequences showed that strain ISL-40T belongs to the genus Marinobacter. Strain ISL-40T exhibited 16S rRNA gene sequence similarity values of 93.5–96.4 % to the type strains of recognized Marinobacter species. The differential phenotypic properties and phylogenetic distinctiveness of strain ISL-40T revealed that it is separate from recognized Marinobacter species. On the basis of phenotypic, phylogenetic and genetic data, therefore, strain ISL-40T represents a novel species of the genus Marinobacter, for which the name Marinobacter salicampi sp. nov. is proposed. The type strain is ISL-40T (=KCTC 12972T=CCUG 54357T).


2011 ◽  
Vol 61 (5) ◽  
pp. 1182-1188 ◽  
Author(s):  
Ki-Hoon Oh ◽  
Yong-Taek Jung ◽  
Tae-Kwang Oh ◽  
Jung-Hoon Yoon

A Gram-negative-staining, non-motile and rod-shaped bacterial strain, HD-28T, was isolated from a tidal flat of the Yellow Sea, Korea. Strain HD-28T grew optimally at pH 7.0–8.0 and 30 °C in the presence of 2–3 % (w/v) NaCl. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain HD-28T was most closely related to species of the genus Ruegeria and exhibited 95.5–96.9 % 16S rRNA gene sequence similarity to the type strains of Ruegeria species. A neighbour-joining phylogenetic tree based on gyrB gene sequences also showed that strain HD-28T fell within the cluster comprising recognized species of the genus Ruegeria, showing 77.5–83.9 % sequence similarity. Strain HD-28T contained Q-10 as the predominant ubiquinone and C18 : 1ω7c as the major fatty acid. The major polar lipids detected in strain HD-28T were phosphatidylcholine, phosphatidylglycerol, an unidentified aminolipid and two unidentified lipids. The DNA G+C content was 57.9 mol%. Differential phenotypic properties, together with phylogenetic distinctiveness, demonstrated that strain HD-28T could be distinguished from recognized species of the genus Ruegeria. On the basis of phenotypic, chemotaxonomic and phylogenetic data, strain HD-28T is considered to represent a novel species of the genus Ruegeria, for which the name Ruegeria faecimaris sp. nov. is proposed. The type strain is HD-28T ( = KCTC 23044T = CCUG 58878T).


2020 ◽  
Vol 367 (9) ◽  
Author(s):  
Sooyeon Park ◽  
Siyu Chen ◽  
Jung-Sook Lee ◽  
Wonyong Kim ◽  
Jung-Hoon Yoon

ABSTRACT A Gram-stain-negative bacterial strain, JBTF-M27T, was isolated from a tidal flat from Yellow Sea, Republic of Korea. Neighbor-joining phylogenetic tree of 16S rRNA gene sequences showed that strain JBTF-M27T fell within the clade comprising the type strains of Sulfitobacter species. Strain JBTF-M27T exhibited the highest 16S rRNA gene sequence similarity (98.8%) to the type strain of S. porphyrae. Genomic ANI and dDDH values of strain JBTF-M27T between the type strains of Sulfitobacter species were less than 76.1 and 19.2%, respectively. Mean DNA-DNA relatedness value between strain JBTF-M27T and the type strain of S. porphyrae was 21%. DNA G + C content of strain JBTF-M27T from genome sequence was 57.8% (genomic analysis). Strain JBTF-M27T contained Q-10 as the predominant ubiquinone and C18:1ω7c as the major fatty acid. The major polar lipids of strain JBTF-M27T were phosphatidylcholine, phosphatidylglycerol and one unidentified aminolipid. Distinguished phenotypic properties, along with the phylogenetic and genetic distinctiveness, revealed that strain JBTF-M27T is separated from recognized Sulfitobacter species. On the basis of the data presented, strain JBTF-M27T ( = KACC 21648T = NBRC 114356T) is considered to represent a novel species of the genus Sulfitobacter, for which the name Sulfitobacter sediminilitoris sp. nov. is proposed.


2007 ◽  
Vol 57 (10) ◽  
pp. 2365-2369 ◽  
Author(s):  
Jung-Hoon Yoon ◽  
Seo-Youn Jung ◽  
So-Jung Kang ◽  
Tae-Kwang Oh

A Gram-negative, non-motile, rod-shaped, Microbulbifer-like bacterial strain, ISL-39T, was isolated from a marine solar saltern of the Yellow Sea in Korea and was subjected to a polyphasic taxonomic investigation. Strain ISL-39T grew optimally at pH 7.0–8.0 and 37 °C. It contained Q-8 as the predominant ubiquinone and iso-C15 : 0, C16 : 0 and iso-C17 : 0 as the major fatty acids. The DNA G+C content was 57.7 mol%. A phylogenetic analysis based on 16S rRNA gene sequences showed that strain ISL-39T belonged to the genus Microbulbifer. Strain ISL-39T exhibited 16S rRNA gene sequence similarity values of 94.7–97.5 % with respect to the type strains of four recognized Microbulbifer species. DNA–DNA relatedness data and the differential phenotypic properties and phylogenetic distinctiveness of ISL-39T make this strain distinguishable from the recognized Microbulbifer species. On the basis of the phenotypic, phylogenetic and genetic data, strain ISL-39T represents a novel species of the genus Microbulbifer, for which the name Microbulbifer celer sp. nov. is proposed. The type strain is ISL-39T (=KCTC 12973T=CCUG 54356T).


2015 ◽  
Vol 65 (Pt_7) ◽  
pp. 2042-2047 ◽  
Author(s):  
Sooyeon Park ◽  
Yong-Taek Jung ◽  
Sung-Min Won ◽  
Jung-Sook Lee ◽  
Jung-Hoon Yoon

A Gram-stain-positive, facultatively anaerobic, non-spore-forming, non-flagellated and rod-shaped or ovoid bacterial strain, designated BS-12MT, was isolated from a tidal flat sediment on the South Sea, South Korea. Strain BS-12MT grew optimally at 35 °C, at pH 7.0–8.0 and in the presence of 2.0 % (w/v) NaCl. The neighbour-joining phylogenetic tree based on 16S rRNA gene sequences revealed that strain BS-12MT fell within the cluster comprising the type strains of species of the genus Demequina, joining the type strain of Demequina aestuarii with which it shared the highest sequence similarity (98.6 %). It exhibited 16S rRNA gene sequence similarity of 96.1–97.9 % to the type strains of other species of the genus Demequina. The peptidoglycan type of strain BS-12MT was A4β based on l-Orn − l-Ser − d-Glu. Strain BS-12MT contained demethylmenaquinone-9(H4) as the major menaquinone and anteiso-C15:0 and C16:0 as the major fatty acids. The major polar lipids of strain BS-12MT were phosphatidylinositol and phosphatidylinositolmannoside. The DNA G+C content of strain BS-12MT was 70.7 mol% and its DNA–DNA relatedness values with the type strains of five phylogenetically related species of the genus Demequina were 15–34 %. Differential phenotypic properties, together with phylogenetic and genetic distinctiveness, revealed that strain BS-12MT is separate from other species of the genus Demequina. On the basis of the data presented, strain BS-12MT is considered to represent a novel species of the genus Demequina, for which the name Demequina activiva sp. nov. is proposed. The type strain is BS-12MT ( = KCTC 29674T = NBRC 110675T).


2006 ◽  
Vol 56 (7) ◽  
pp. 1577-1581 ◽  
Author(s):  
Seo-Youn Jung ◽  
Tae-Kwang Oh ◽  
Jung-Hoon Yoon

A novel Tenacibaculum-like bacterial strain, SMK-4T, was isolated from a tidal flat sediment in Korea. Strain SMK-4T was Gram-negative, pale yellow-pigmented and rod-shaped. It grew optimally at 30–37 °C and in the presence of 2–3 % (w/v) NaCl. It contained MK-6 as the predominant menaquinone and iso-C15 : 0, iso-C16 : 0 3-OH and C16 : 1 ω7c and/or iso-C15 : 0 2-OH as the major fatty acids (>10 % of total fatty acids). The DNA G+C content was 33.6 mol%. Phylogenetic trees based on 16S rRNA gene sequences showed that strain SMK-4T fell within the evolutionary radiation encompassed by the genus Tenacibaculum. Strain SMK-4T exhibited 16S rRNA gene sequence similarity levels of 95.2–98.6 % with respect to the type strains of recognized Tenacibaculum species. DNA–DNA relatedness levels and differential phenotypic properties made it possible to categorize strain SMK-4T as a species that is separate from previously described Tenacibaculum species. On the basis of phenotypic properties and phylogenetic and genetic distinctiveness, strain SMK-4T (=KCTC 12569T=JCM 13491T) should be classified as a novel Tenacibaculum species, for which the name Tenacibaculum aestuarii sp. nov. is proposed.


Sign in / Sign up

Export Citation Format

Share Document