scholarly journals Microbulbifer celer sp. nov., isolated from a marine solar saltern of the Yellow Sea in Korea

2007 ◽  
Vol 57 (10) ◽  
pp. 2365-2369 ◽  
Author(s):  
Jung-Hoon Yoon ◽  
Seo-Youn Jung ◽  
So-Jung Kang ◽  
Tae-Kwang Oh

A Gram-negative, non-motile, rod-shaped, Microbulbifer-like bacterial strain, ISL-39T, was isolated from a marine solar saltern of the Yellow Sea in Korea and was subjected to a polyphasic taxonomic investigation. Strain ISL-39T grew optimally at pH 7.0–8.0 and 37 °C. It contained Q-8 as the predominant ubiquinone and iso-C15 : 0, C16 : 0 and iso-C17 : 0 as the major fatty acids. The DNA G+C content was 57.7 mol%. A phylogenetic analysis based on 16S rRNA gene sequences showed that strain ISL-39T belonged to the genus Microbulbifer. Strain ISL-39T exhibited 16S rRNA gene sequence similarity values of 94.7–97.5 % with respect to the type strains of four recognized Microbulbifer species. DNA–DNA relatedness data and the differential phenotypic properties and phylogenetic distinctiveness of ISL-39T make this strain distinguishable from the recognized Microbulbifer species. On the basis of the phenotypic, phylogenetic and genetic data, strain ISL-39T represents a novel species of the genus Microbulbifer, for which the name Microbulbifer celer sp. nov. is proposed. The type strain is ISL-39T (=KCTC 12973T=CCUG 54356T).

2007 ◽  
Vol 57 (9) ◽  
pp. 2102-2105 ◽  
Author(s):  
Jung-Hoon Yoon ◽  
Mi-Hwa Lee ◽  
So-Jung Kang ◽  
Tae-Kwang Oh

A Gram-negative, motile, rod-shaped, Marinobacter-like bacterial strain, ISL-40T, was isolated from a marine solar saltern of the Yellow Sea in Korea. The taxonomic position of the novel strain was investigated using a polyphasic approach. Strain ISL-40T grew optimally at pH 7.0–8.0 and at 30 °C. It contained Q-9 as the predominant ubiquinone. The major fatty acids were C16 : 0, C16 : 1 ω7c and/or iso-C15 : 0 2-OH and 10-methyl C16 : 0. The DNA G+C content was 58.1 mol%. A phylogenetic analysis based on 16S rRNA gene sequences showed that strain ISL-40T belongs to the genus Marinobacter. Strain ISL-40T exhibited 16S rRNA gene sequence similarity values of 93.5–96.4 % to the type strains of recognized Marinobacter species. The differential phenotypic properties and phylogenetic distinctiveness of strain ISL-40T revealed that it is separate from recognized Marinobacter species. On the basis of phenotypic, phylogenetic and genetic data, therefore, strain ISL-40T represents a novel species of the genus Marinobacter, for which the name Marinobacter salicampi sp. nov. is proposed. The type strain is ISL-40T (=KCTC 12972T=CCUG 54357T).


2007 ◽  
Vol 57 (12) ◽  
pp. 2738-2742 ◽  
Author(s):  
Jung-Hoon Yoon ◽  
Seo-Youn Jung ◽  
So-Jung Kang ◽  
Yong-Taek Jung ◽  
Tae-Kwang Oh

A Gram-negative, non-motile, rod-shaped bacterium, strain ISL-6T, phenotypically resembling members of the genus Salegentibacter, was isolated from a marine solar saltern of the Yellow Sea in Korea and subjected to a polyphasic taxonomic investigation. Strain ISL-6T grew optimally at pH 7.0–8.0 and 30 °C and in the presence of 8 % (w/v) NaCl. It contained MK-6 as the predominant menaquinone. The major fatty acids were iso-C15 : 0 and anteiso-C15 : 0. The DNA G+C content was 37.5 mol%. A phylogenetic analysis based on 16S rRNA gene sequences showed that strain ISL-6T belonged to the genus Salegentibacter. Strain ISL-6T exhibited 16S rRNA gene sequence similarity values of 92.0–98.6 % with respect to the type strains of recognized Salegentibacter species. Low DNA–DNA relatedness values, differential phenotypic properties and phylogenetic distinctiveness demonstrated that strain ISL-6T is distinguishable from the recognized Salegentibacter species. Therefore strain ISL-6T represents a novel species of the genus Salegentibacter, for which the name Salegentibacter salarius sp. nov. is proposed. The type strain is ISL-6T (=KCTC 12974T =CCUG 54355T).


2010 ◽  
Vol 60 (2) ◽  
pp. 434-438 ◽  
Author(s):  
Jung-Hoon Yoon ◽  
So-Jung Kang ◽  
Yong-Taek Jung ◽  
Mi-Hwa Lee ◽  
Tae-Kwang Oh

A Gram-stain-positive, motile, rod-shaped bacterial strain, ISL-17T, was isolated from a marine solar saltern of the Yellow Sea, Korea, and its taxonomic position was investigated by means of a polyphasic study. Strain ISL-17T grew optimally at pH 8.5–9.0, at 37 °C and in the presence of approximately 10 % (w/v) NaCl. It contained meso-diaminopimelic acid as the diagnostic diamino acid in the peptidoglycan, MK-7 as the predominant menaquinone and iso-C15 : 0, anteiso-C15 : 0 and iso-C16 : 0 as the major fatty acids. The DNA G+C content was 48.1 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain ISL-17T fell within the genus Alkalibacillus, clustering with Alkalibacillus salilacus BH163T with a bootstrap resampling value of 100 %. Strain ISL-17T exhibited 98.2 % 16S rRNA gene sequence similarity to A. salilacus BH163T and 95.8–96.5 % similarity to the type strains of the other Alkalibacillus species. The mean DNA–DNA relatedness value between strain ISL-17T and A. salilacus KCTC 3916T was 19 %. The phenotypic properties of strain ISL-17T, together with its phylogenetic and genetic distinctiveness, enable this strain to be differentiated from recognized Alkalibacillus species. On the basis of phenotypic, phylogenetic and genetic data, strain ISL-17T represents a novel species within the genus Alkalibacillus, for which the name Alkalibacillus flavidus sp. nov. is proposed; the type strain is ISL-17T (=KCTC 13258T =CCUG 56753T).


2007 ◽  
Vol 57 (11) ◽  
pp. 2503-2506 ◽  
Author(s):  
Jung-Hoon Yoon ◽  
Seo-Youn Jung ◽  
Yong-Taek Jung ◽  
Tae-Kwang Oh

A Gram-negative, motile, rod-shaped, Idiomarina-like bacterial strain, ISL-52T, was isolated from a marine solar saltern of the Yellow Sea in Korea and was subjected to a polyphasic taxonomic investigation. Strain ISL-52T grew optimally at pH 7.0–8.0 and at 30–37 °C. It contained Q-8 as the predominant ubiquinone. The major fatty acids (>10 % of total fatty acids) were iso-C15 : 0, iso-C17 : 0 and iso-C17 : 1 ω9c. The DNA G+C content was 53.9 mol%. A phylogenetic analysis based on 16S rRNA gene sequences showed that strain ISL-52T fell within the genus Idiomarina, joining the type strain of Idiomarina homiensis at a bootstrap resampling value of 100 %. Strain ISL-52T exhibited 16S rRNA gene sequence similarity values of 94.9–96.7 % with respect to the type strains of eight recognized Idiomarina species. The differential phenotypic properties of ISL-52T, together with its phylogenetic distinctiveness, demonstrated that this strain is distinguishable from the recognized Idiomarina species. On the basis of phenotypic, phylogenetic and genetic data, therefore, strain ISL-52T represents a novel species of the genus Idiomarina, for which the name Idiomarina salinarum sp. nov. is proposed. The type strain is ISL-52T (=KCTC 12971T=CCUG 54359T).


2005 ◽  
Vol 55 (6) ◽  
pp. 2413-2417 ◽  
Author(s):  
Jung-Hoon Yoon ◽  
So-Jung Kang ◽  
Choong-Hwan Lee ◽  
Hyun Woo Oh ◽  
Tae-Kwang Oh

A Gram-positive or Gram-variable, motile, endospore-forming, halophilic bacterial strain, MSS-402T, was isolated from a marine solar saltern in Korea, and subjected to a polyphasic taxonomic study. Some cells of strain MSS-402T were long filamentous rods. The isolate grew optimally at 37 °C and in the presence of 3–5 % (w/v) NaCl. Strain MSS-402T had cell-wall peptidoglycan based on l-orn–d-Asp, MK-7 as the predominant menaquinone and anteiso-C15 : 0, anteiso-C17 : 0 and iso-C16 : 0 as major fatty acids. The DNA G+C content was 42·9 mol%. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain MSS-402T falls within the evolutionary radiation of species of the genus Halobacillus. Levels of 16S rRNA gene sequence similarity between strain MSS-402T and the type strains of recognized Halobacillus species ranged from 98·0 % (with Halobacillus halophilus) to 99·2 % (with Halobacillus litoralis and Halobacillus trueperi). Levels of DNA–DNA binding indicated that strain MSS-402T represents a genomic species that is distinct from recognized Halobacillus species. Strain MSS-402T was differentiated from Halobacillus species by means of several phenotypic characteristics. On the basis of its phenotypic properties and phylogenetic and genetic distinctiveness, strain MSS-402T (=KCTC 3957T=DSM 17110T) should be classified as the type strain of a novel Halobacillus species, for which the name Halobacillus yeomjeoni sp. nov. is proposed.


2005 ◽  
Vol 55 (3) ◽  
pp. 1167-1170 ◽  
Author(s):  
Jung-Hoon Yoon ◽  
Kook Hee Kang ◽  
Soo-Hwan Yeo ◽  
Tae-Kwang Oh

A Gram-negative, non-spore-forming, yellow-pigmented, slightly halophilic bacterial strain, SW-109T, was isolated from a tidal flat of the Yellow Sea in Korea, and subjected to a polyphasic taxonomic study. This isolate did not produce bacteriochlorophyll a and contained ubiquinone-10 as the predominant respiratory lipoquinone and C18 : 1 ω7c as the major fatty acid. The DNA G+C content was 60·3 mol%. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain SW-109T is phylogenetically affiliated to the genus Erythrobacter of the family Sphingomonadaceae. Strain SW-109T exhibited levels of 16S rRNA gene sequence similarity to the type strains of Erythrobacter species of 94·0–96·3 %, making it possible to categorize strain SW-109T as a species that is separate from previously recognized Erythrobacter species. On the basis of its phenotypic properties and phylogenetic distinctiveness, SW-109T (=KCTC 12311T=JCM 12599T) was classified as the type strain of a novel Erythrobacter species, for which the name Erythrobacter luteolus sp. nov. is proposed.


2015 ◽  
Vol 65 (Pt_10) ◽  
pp. 3439-3446 ◽  
Author(s):  
Yong-Taek Jung ◽  
Jung-Sook Lee ◽  
Jung-Hoon Yoon

A Gram-strain-negative, coccoid or oval-shaped, non-motile bacterial strain, designated MDM-1T, was isolated from a tidal-flat sediment on the Korean peninsula. Strain MDM-1T was found to grow optimally at pH 7.0–8.0, at 30 °C and in the presence of 2–3 % (w/v) NaCl. A neighbour-joining phylogenetic tree based on 16S rRNA gene sequences showed that strain MDM-1T falls within the clade comprising species of the genus Algoriphagus, clustering with the type strains of Algoriphagus halophilus, A. lutimaris, A. chungangensis and A. machipongonensis, with which it exhibited 97.2–98.5 % 16S rRNA gene sequence similarity. Sequence similarities to the type strains of the other recognized species of the genus Algoriphagus were 92.8–97.6 %. Strain MDM-1T was found to contain MK-7 as the predominant menaquinone and iso-C15 : 0 and summed feature 3 (C16 : 1ω6c and/or C16 : 1ω7c) as the major fatty acids. The major polar lipids were identified as phosphatidylcholine, phosphatidylethanolamine and two unidentified lipids. The DNA G+C content of strain MDM-1T was determined to be 42.7 mol% and the mean DNA–DNA relatedness with A. halophilus KCTC 12051T, A. lutimaris S1-3T, A. chungangensis KCTC 23759T, A. machipongonensis DSM 24695T and A. ratkowskyi CIP 107452T was 19.7–5.2 %. Differential phenotypic properties, together with the phylogenetic and genetic distinctiveness, revealed that strain MDM-1T is distinguishable from recognized species of the genus Algoriphagus. On the basis of the data presented, strain MDM-1T is proposed to represent a novel species of the genus Algoriphagus, for which the name Algoriphagus aestuarii sp. nov. is proposed. The type strain is MDM-1T ( = KCTC 42199T = NBRC 110552T).


2012 ◽  
Vol 62 (2) ◽  
pp. 347-351 ◽  
Author(s):  
Soo-Young Lee ◽  
Chul-Hyung Kang ◽  
Tae-Kwang Oh ◽  
Jung-Hoon Yoon

A Gram-staining-variable, motile, endospore-forming and rod-shaped bacterial strain, IDS-20T, was isolated from a marine solar saltern in Korea and subjected to a polyphasic taxonomic investigation. Strain IDS-20T grew optimally at 37 °C, at pH 7.5–8.0 and in the presence of 4–5 % (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain IDS-20T belongs to the genus Virgibacillus. Strain IDS-20T exhibited 93.4–96.6 % 16S rRNA gene sequence similarity to the type strains of species of the genus Virgibacillus. Strain IDS-20T had MK-7 as the predominant menaquinone and a cell-wall peptidoglycan based on meso-diaminopimelic acid. The major fatty acids were anteiso-C15 : 0 and anteiso-C17 : 0 and major polar lipids were diphosphatidylglycerol, phosphatidylglycerol and two unidentified phospholipids. The DNA G+C content was 39.5 mol%. The phylogenetic distinctiveness and differential phenotypic characteristics of strain IDS-20T demonstrated that this strain can be distinguished from recognized species of the genus Virgibacillus. On the basis of the data presented, strain IDS-20T represents a novel species of the genus Virgibacillus, for which the name Virgibacillus campisalis sp. nov. is proposed. The type strain is IDS-20T ( = KCTC 13727T  = CCUG 59308T).


2005 ◽  
Vol 55 (4) ◽  
pp. 1635-1639 ◽  
Author(s):  
Jung-Hoon Yoon ◽  
So-Jung Kang ◽  
Tae-Kwang Oh

Two Gram-negative, rod-shaped, non-motile bacterial strains, MSS-170T and MSS-171, were isolated from sea water of a marine solar saltern of the Yellow Sea, Korea, and characterized by using a polyphasic taxonomic approach. The two isolates grew optimally at 30 °C and in the presence of 2 % (w/v) NaCl. They were characterized chemotaxonomically as having MK-7 as the predominant menaquinone and major amounts of fatty acids iso-C15 : 0 and C16 : 1 ω7c and/or iso-C15 : 0 2-OH. The DNA G+C content of each of the two strains was 42 mol%. Phylogenetic analyses based on 16S rRNA gene sequences showed that the two strains fall within the evolutionary radiation enclosed by the genus Algoriphagus. Strains MSS-170T and MSS-171 had identical 16S rRNA gene sequences and exhibited a mean DNA–DNA relatedness level of 93 %. The two strains exhibited 16S rRNA gene sequence similarity levels of 96·4–98·9 % with respect to the type strains of recognized Algoriphagus species. DNA–DNA relatedness levels between the two strains and the type strains of six Algoriphagus species were less than 35 %. On the basis of phenotypic data and phylogenetic and genetic distinctiveness, strains MSS-170T and MSS-171 were classified in the genus Algoriphagus as members of a novel species, for which the name Algoriphagus locisalis sp. nov. is proposed. The type strain is MSS-170T (=KCTC 12310T=JCM 12597T).


2010 ◽  
Vol 60 (1) ◽  
pp. 191-195 ◽  
Author(s):  
Jung-Hoon Yoon ◽  
So-Jung Kang ◽  
Sooyeon Park ◽  
Ki-Hoon Oh ◽  
Tae-Kwang Oh

A Gram-negative, motile and pleomorphic bacterial strain, SMK-146T, was isolated from a tidal flat sediment of the Yellow Sea, Korea, and its taxonomic position was investigated. Strain SMK-146T grew optimally at pH 7.0–8.0 and 30 °C. It contained Q-10 as the predominant ubiquinone and C18 : 1 ω7c and 11-methyl C18 : 1 ω7c as the major fatty acids. The major polar lipids were phosphatidylcholine, phosphatidylglycerol and phosphatidylethanolamine. The DNA G+C content was 68.4 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain SMK-146T belongs to the genus Jannaschia. Strain SMK-146T exhibited 16S rRNA gene sequence similarity values of 95.3–97.0 % to the type strains of the five recognized Jannaschia species. The mean DNA–DNA relatedness value between strain SMK-146T and Jannaschia seosinensis KCCM 42114T, the closest phylogenetic neighbour, was 17 %. Differential phenotypic properties also revealed that strain SMK-146T differs from the recognized Jannaschia species. On the basis of phenotypic, phylogenetic and genetic data, strain SMK-146T represents a novel species of the genus Jannaschia, for which the name Jannaschia seohaensis sp. nov. is proposed. The type strain is SMK-146T (=KCTC 22172T =CCUG 55326T).


Sign in / Sign up

Export Citation Format

Share Document