scholarly journals Identification of species of Abiotrophia, Enterococcus, Granulicatella and Streptococcus by sequence analysis of the ribosomal 16S–23S intergenic spacer region

2007 ◽  
Vol 56 (4) ◽  
pp. 504-513 ◽  
Author(s):  
Sheng Kai Tung ◽  
Lee Jene Teng ◽  
Mario Vaneechoutte ◽  
Hung Mo Chen ◽  
Tsung Chain Chang

The feasibility of sequence analysis of the ribosomal 16S–23S intergenic spacer region (ITS) was evaluated for identification of 24 species of Streptococcus, one species of Abiotrophia, 18 species of Enterococcus and three species of Granulicatella. As GenBank currently lacks ITS sequence entries for many species of these four genera, the ITS sequences of 38 type strains were first sequenced and submitted to GenBank to facilitate species identification of these genera. Subsequently, the ITS sequences of 217 strains (84 reference strains and 133 clinical isolates) were determined and species identification was made by blast search for homologous sequences in public databases. Species other than Streptococcus contained multiple ITS fragments and only the shortest fragment was analysed. A total of 25 isolates (11.5 %) produced discrepant identification by ITS sequencing. The 25 discordant strains were analysed further by sequencing of the 16S rRNA gene for species clarification, and 21 were found to be identified correctly by ITS sequence analysis. The correct identification rate by ITS sequencing was 98.2 % (213/217). Several closely related enterococcal and streptococcal species/subspecies contained specific ITS signature sequences that were useful for differentiating these bacteria. In conclusion, ITS sequencing provides a useful approach towards identifying this group of pathogens on a molecular platform alongside 16S rRNA gene sequencing.

2014 ◽  
Vol 81 (1) ◽  
pp. 48-58 ◽  
Author(s):  
Brandee L. Stone ◽  
Nathan M. Russart ◽  
Robert A. Gaultney ◽  
Angela M. Floden ◽  
Jefferson A. Vaughan ◽  
...  

ABSTRACTScant attention has been paid to Lyme disease,Borrelia burgdorferi,Ixodes scapularis, or reservoirs in eastern North Dakota despite the fact that it borders high-risk counties in Minnesota. Recent reports ofB. burgdorferiandI. scapularisin North Dakota, however, prompted a more detailed examination. Spirochetes cultured from the hearts of five rodents trapped in Grand Forks County, ND, were identified asB. burgdorferi sensu latothrough sequence analyses of the 16S rRNA gene, the 16S rRNA gene-ileTintergenic spacer region,flaB,ospA,ospC, andp66. OspC typing revealed the presence of groups A, B, E, F, L, and I. Two rodents were concurrently carrying multiple OspC types. Multilocus sequence typing suggested the eastern North Dakota strains are most closely related to those found in neighboring regions of the upper Midwest and Canada. BALB/c mice were infected withB. burgdorferiisolate M3 (OspC group B) by needle inoculation or tick bite. Tibiotarsal joints and ear pinnae were culture positive, andB. burgdorferiM3 was detected by quantitative PCR (qPCR) in the tibiotarsal joints, hearts, and ear pinnae of infected mice. Uninfected larvalI. scapularisticks were able to acquireB. burgdorferiM3 from infected mice; M3 was maintained inI. scapularisduring the molt from larva to nymph; and further, M3 was transmitted from infectedI. scapularisnymphs to naive mice, as evidenced by cultures and qPCR analyses. These results demonstrate that isolate M3 is capable of disseminated infection by both artificial and natural routes of infection. This study confirms the presence of unique (nonclonal) and infectiousB. burgdorferipopulations in eastern North Dakota.


1998 ◽  
Vol 36 (1) ◽  
pp. 139-147 ◽  
Author(s):  
Andreas Roth ◽  
Marga Fischer ◽  
Mohamed E. Hamid ◽  
Sabine Michalke ◽  
Wolfgang Ludwig ◽  
...  

Interspecific polymorphisms of the 16S rRNA gene (rDNA) are widely used for species identification of mycobacteria. 16S rDNA sequences, however, do not vary greatly within a species, and they are either indistinguishable in some species, for example, in Mycobacterium kansasii and M. gastri, or highly similar, for example, in M. malmoense and M. szulgai. We determined 16S-23S rDNA internal transcribed spacer (ITS) sequences of 60 strains in the genus Mycobacterium representing 13 species (M. avium, M. conspicuum, M. gastri, M. genavense, M. kansasii,M. malmoense, M. marinum, M. shimoidei, M. simiae, M. szulgai,M. triplex, M. ulcerans, and M. xenopi). An alignment of these sequences together with additional sequences available in the EMBL database (for M. intracellulare, M. phlei, M. smegmatis, and M. tuberculosis) was established according to primary- and secondary-structure similarities. Comparative sequence analysis applying different treeing methods grouped the strains into species-specific clusters with low sequence divergence between strains belonging to the same species (0 to 2%). The ITS-based tree topology only partially correlated to that based on 16S rDNA, but the main branching orders were preserved, notably, the division of fast-growing from slowly growing mycobacteria, separate branching for M. simiae, M. genavense, and M. triplex, and distinct branches for M. xenopi and M. shimoidei. Comparisons of M. gastri with M. kansasii and M. malmoense with M. szulgairevealed ITS sequence similarities of 93 and 88%, respectively.M. marinum and M. ulcerans possessed identical ITS sequences. Our results show that ITS sequencing represents a supplement to 16S rRNA gene sequences for the differentiation of closely related species. Slowly growing mycobacteria show a high sequence variation in the ITS; this variation has the potential to be used for the development of probes as a rapid approach to mycobacterial identification.


2011 ◽  
Vol 61 (4) ◽  
pp. 716-721 ◽  
Author(s):  
Joachim Spergser ◽  
Stefan Langer ◽  
Simone Muck ◽  
Kathrin Macher ◽  
Michael Szostak ◽  
...  

Fourteen Mycoplasma strains were isolated from the oral cavity and genital tract of asymptomatic dogs. Isolates had been preliminarily identified by conventional serological testing as Mycoplasma bovigenitalium, but in 16S–23S rRNA intergenic spacer PCR-RFLP assays the isolates exhibited an RFLP pattern distinct from M. bovigenitalium PG11T. Analysis of the 16S rRNA gene placed a representative of the isolates (strain 1642T) in the M. bovigenitalium subcluster of the Mycoplasma bovis cluster of mycoplasmas, with the highest sequence similarities to Mycoplasma californicum ST-6T (96.4 %), M. bovigenitalium PG11T (96.3 %) and Mycoplasma phocirhinis 852T (96.2 %). 16S rRNA gene sequence similarities almost equidistant from three recognized species and results obtained by sequence analysis of the 16S–23S rRNA intergenic spacer region, polar lipid profiles and serological reactions indicated that this organism represents a novel species of the genus Mycoplasma for which the name Mycoplasma mucosicanis sp. nov. is proposed, with strain 1642T ( = ATCC BAA-1895T  = DSM 22457T) as the type strain.


2004 ◽  
Vol 54 (2) ◽  
pp. 537-542 ◽  
Author(s):  
Victoria J. Chalker ◽  
Joe Brownlie

The taxonomy of canine Mollicutes is described, based on phylogenetic analysis of 16S rRNA gene and 16S/23S rRNA intergenic spacer (IGS) region sequences. The nucleotide sequences of the 16S rRNA gene of two untyped mycoplasmas and the IGS region of 11 Mycoplasma species were determined and used for phylogenetic analysis. The two untyped Mycoplasma strains, HRC 689 and VJC 358, were found to be distinct from all known canine mycoplasmas and all published mycoplasma 16S rRNA gene sequences.


2011 ◽  
Vol 225 (1) ◽  
pp. 65-69 ◽  
Author(s):  
Toshinori Kawanami ◽  
Kazuhiro Yatera ◽  
Kazumasa Fukuda ◽  
Kei Yamasaki ◽  
Masamizu Kunimoto ◽  
...  

2010 ◽  
Vol 60 (4) ◽  
pp. 949-952 ◽  
Author(s):  
Soo-Jin Kim ◽  
Hang-Yeon Weon ◽  
Yi-Seul Kim ◽  
Rangasamy Anandham ◽  
Seung-Hee Yoo ◽  
...  

An ivory-coloured bacterium, designated strain 5YN7-3T, was isolated from a wetland, Yongneup, Korea. Cells of the strain were aerobic, Gram-stain-negative, non-motile and short rods. 16S rRNA gene sequence analysis demonstrated that strain 5YN7-3T belongs to the order Rhizobiales of the class Alphaproteobacteria and is closely related to Kaistia soli 5YN9-8T (97.8 %), Kaistia granuli Ko04T (97.6 %) and Kaistia adipata Chj404T (97.4 %). Strain 5YN7-3T showed DNA–DNA hybridization values of 28, 22 and 35 % with K. granuli Ko04T, K. soli 5YN9-8T and K. adipata Chj404T, respectively. The major fatty acids were C18 : 1 ω7c (51.2 %), C19 : 0 cyclo ω8c (25.0 %), C18 : 0 (12.9 %) and C16 : 0 (10.8 %) (>10 % of total fatty acids). Ubiquinone-10 was the major isoprenoid quinone and the DNA G+C content was 66.5 mol%. The phenotypic characteristics in combination with 16S rRNA gene sequence analysis and DNA–DNA hybridization data clearly define strain 5YN7-3T as a novel species of the genus Kaistia, for which the name Kaistia terrae sp. nov. is proposed. The type strain is 5YN7-3T (=KACC 12910T =DSM 21341T).


2007 ◽  
Vol 57 (2) ◽  
pp. 293-296 ◽  
Author(s):  
Mitsuo Sakamoto ◽  
Maki Kitahara ◽  
Yoshimi Benno

A bacterial strain isolated from human faeces, M-165T, was characterized in terms of its phenotypic and biochemical features, cellular fatty acid profile, menaquinone profile and phylogenetic position (based on 16S rRNA gene sequence analysis). A 16S rRNA gene sequence analysis showed that the isolate was a member of the genus Parabacteroides. Strain M-165T was closely related to Parabacteroides merdae strains, showing 98 % sequence similarity. The strain was obligately anaerobic, non-pigmented, non-spore-forming, non-motile, Gram-negative, rod-shaped and was able to grow on media containing 20 % bile. Although the phenotypic characteristics of the strain M-165T were similar to those of P. merdae, the isolate could be differentiated from P. merdae by means of API 20A tests for l-arabinose and l-rhamnose fermentation. DNA–DNA hybridization experiments revealed the genomic distinctiveness of the novel strain with respect to P. merdae JCM 9497T (⩽60 % DNA–DNA relatedness). The DNA G+C content of the strain is 47.6 mol%. On the basis of these data, strain M-165T represents a novel species of the genus Parabacteroides, for which the name Parabacteroides johnsonii sp. nov. is proposed. The type strain is M-165T (=JCM 13406T=DSM 18315T).


Sign in / Sign up

Export Citation Format

Share Document