23s rrna gene
Recently Published Documents


TOTAL DOCUMENTS

335
(FIVE YEARS 47)

H-INDEX

46
(FIVE YEARS 4)

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Nada K. Alharbi ◽  
Albandary Nasser Alsaloom

The objectives of this study were the selection of lactic acid bacteria (LAB) isolated from raw milk and studying their technological properties and antibacterial activities against bacteria as the cause of cattle mastitis. Biochemical and molecular identification using 16S–23S rRNA gene spacer analysis and 16S rRNA gene sequencing highlighted the presence of three species: Lactiplantibacillus plantarum, Lactococcus lactis, and Levilactobacillus brevis. The enzymatic characterization followed by the determination of technofunctional properties showed that LAB strains did not exhibit any hemolytic effect and were able to produce protease and lipase enzymes. Isolates showed very high antagonistic activity against Gram-positive and Gram-negative bacteria by producing H2O2, bacteriocin(s), and organic acid(s). APIZYM micromethod demonstrated that all selected strains are capable of producing valine arylamidase, cystine arylamidase, N-acetyl-β-glucosaminidase, and ᾳ-mannosidase. The antibiotic susceptibility assay showed that all selected strains were sensible to the majority of tested antibiotics. Based on these results, it can be concluded that the technological properties of the selected LAB allow considering their industrial use in order to formulate bioactive functional foods or drug(s).


2021 ◽  
Vol 70 (11) ◽  
Author(s):  
Yumi Seo ◽  
Heeyoon Park ◽  
Gilho Lee

Antimicrobial resistance in Mycoplasma genitalium has become a global issue, and certain groups have a higher probability of acquiring resistant strains. Little is known about the genetic diversity and characteristics of the antimicrobial resistance-determining sites (ARDSs) of M. genitalium in the Korean population. Therefore, we examined the genetic diversity of the ARDSs of M. genitalium-positive urogenital samples obtained from Korean females (G1) and males (G2) visiting primary care clinics and DNA samples from referred males (G3) with persistent urethritis. From 2014 to 2019, 54 patients from G1, 86 patients from G2, and 68 patients from G3 were included in the study. Sanger sequencing was performed on the 2058/2059 sites in the 23S rRNA gene and quinolone resistance-determining regions (QRDRs) of M. genitalium . The rates of mutation in G1, G2, and G3 were 1.85, 5.81, and 48.53 %, respectively, for A2059G in the 23S rRNA gene (P<0.001); 1.85, 0, and 17.78 %, respectively, for M95R or I in gyrA (P<0.001); 0, 0, and 31.11 %, respectively, for D99N or G in gyrA (P<0.001); and 7.41, 16.28, and 30 %, respectively, for S83R or N or I in parC (P=0.015). A2059G significantly increased the risk of mutations at the gyrA95, gyrA99, and parC83 sites (all P<0.01). In conclusion, although the genetic diversity of the ARDSs of M. genitalium was variable among the groups, it was generally lower in isolates with macrolide resistance and higher in isolates with quinolone resistance in Korea compared with the isolates in other countries. The G3 group demonstrated increased genetic diversity at the A2059G, gyrA95, gyrA99, and parC83 sites.


Pathogens ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1331
Author(s):  
Sara Divari ◽  
Marta Danelli ◽  
Paola Pregel ◽  
Giovanni Ghielmetti ◽  
Nicole Borel ◽  
...  

Rodents represent a natural reservoir of several Bartonella species, including zoonotic ones. In this study, small wild rodents, collected from two sites in rural areas of Switzerland, were screened for Bartonella spp. using molecular detection methods. In brief, 346 rodents were trapped in two rural sites in the Gantrisch Nature Park of Switzerland (Plasselb, canton of Fribourg, and Riggisberg, canton of Bern). Pools of DNA originating from three animals were tested through a qPCR screening and an end-point PCR, amplifying the 16S-23S rRNA gene intergenic transcribed spacer region and citrate synthase (gltA) loci, respectively. Subsequently, DNA was extracted from spleen samples belonging to single animals of gltA positive pools, and gltA and RNA polymerase subunit beta (rpoB) were detected by end-point PCR. Based on PCR results and sequencing, the prevalence of infection with Bartonella spp. in captured rodents, was 21.10% (73/346): 31.78% in Apodemus sp. (41/129), 10.47% in Arvicola scherman (9/86), 17.05% in Myodes glareolus (22/129), and 50% in Microtus agrestis (1/2). A significant association was observed between Bartonella spp. infection and rodent species (p < 0.01) and between trapping regions and positivity to Bartonella spp. infection (p < 0.001). Similarly, prevalence of Bartonella DNA was higher (p < 0.001) in rodents trapped in woodland areas (66/257, 25.68%) compared to those captured in open fields (9/89, 10.11%). Sequencing and phylogenetic analysis demonstrated that the extracted Bartonella DNA belonged mainly to B. taylorii and also to Candidatus “Bartonella rudakovii”, B. grahamii, B. doshiae, and B. birtlesii. In conclusion, the present study could rise public health issues regarding Bartonella infection in rodents in Switzerland.


PLoS ONE ◽  
2021 ◽  
Vol 16 (10) ◽  
pp. e0258694
Author(s):  
Nobuhisa Ishiguro ◽  
Rikako Sato ◽  
Toshihiko Mori ◽  
Hiroshi Tanaka ◽  
Mitsuo Narita ◽  
...  

Objectives Macrolides are generally considered to be the drugs of choice for treatment of patients with Mycoplasma pneumoniae infection. However, macrolide-resistant M. pneumoniae has been emerging since about 2000. The Smart Gene® system (MIZUHO MEDY Co., Ltd., Tosu, Japan) is a novel fully automated system for detection of pathogens using the method of quantitative polymerase chain reaction (qPCR) with QProbe (QProbe PCR). The entire procedure is completed within 50 min and the size of the instrument is small (15 x 34 x 30 cm). The purpose of this study was to evaluate the usefulness of the Smart Gene® system for detection of M. pneumoniae and detection of a point mutation at domain V of the 23S rRNA gene of M. pneumoniae. Materials Pharyngeal swab samples were collected from 154 patients who were suspected of having respiratory tract infections associated with M. pneumoniae. Results Compared with the results of qPCR, the sensitivity and specificity of the Smart Gene® system were 98.7% (78/79) and 100.0% (75/75), respectively. A point mutation at domain V of the 23S rRNA gene was detected from 7 (9.0%) of 78 M. pneumoniae-positive samples by the Smart Gene® system and these results were confirmed by direct sequencing. The minimum inhibitory concentrations of clarithromycin among the 5 isolates of M. pneumoniae with a point mutation at domain V of the 23S rRNA gene were >64 μg/ml and those among the 33 isolates without a mutation in the 23S rRNA gene were <0.0625 μg/ml. Conclusion The Smart Gene® system is a rapid and accurate assay for detection of the existence of M. pneumoniae and a point mutation at domain V of the 23S rRNA gene of M. pneumoniae at the same time. The Smart Gene® system is suitable for point-of-care testing in both hospital and outpatient settings.


Author(s):  
Konrad Egli ◽  
Anna Roditscheff ◽  
Ursula Flückiger ◽  
Martin Risch ◽  
Lorenz Risch ◽  
...  

Abstract Background The resistance of Neisseria gonorrhoeae to ceftriaxone is unusual in Switzerland. The underlying genotype responsible for resistance is suspected to be novel. Generally, resistance in Neisseria gonorrhoeae (Ng) involves a comprehensive set of genes with many different mutations leading to resistance to different β-lactams and fluoroquinolones. Case presentation A patient had a positive result from specific PCR for Ng. We routinely culture all clinical specimens with a positive NG-PCR. In this particular case, we isolated a strain with resistance to ceftriaxone in Switzerland. A total of seven different genes (penA, ponA, porinB, mtr, gyrA, parC, 23S rRNA gene) in this strain were partially sequenced for comparison with phenotypic susceptibility testing. Interestingly, two different mutations in the porinB gene were observed, and data on this gene are limited. Information on the identified allele type of the penA gene is very limited as well. Three different mutations of parC and gyrA that correlate with ciprofloxacin resistance were found. The combination of ceftriaxone and ciprofloxacin resistance makes an appropriate treatment difficult to obtain due to multidrug resistance. Conclusion The combined results for all genes show the appearance of new mutations in central Europe either due to worldwide spread or the emergence of new genetic combinations of mutations.


Author(s):  
Dorottya Földi ◽  
Zsuzsa Kreizinger ◽  
Katinka Bekő ◽  
Nikolett Belecz ◽  
Krisztián Bányai ◽  
...  

AbstractThe control of Mycoplasma hyorhinis infection relies mainly on antimicrobial therapy. However, the antibiotic susceptibility testing of the bacteria is usually not performed before applying the treatment, and thus therapeutic failures are not uncommon. In the case of M. hyorhinis, several antibiotic-resistance-related single nucleotide polymorphisms (SNPs) are known but assays for their detection have not been described yet. The aims of the present study were to investigate macrolide- and lincomycin-resistance-related SNPs in Hungarian M. hyorhinis isolates and to develop mismatch amplification mutation assays (MAMA) to detect the identified resistance markers. Minimal inhibitory concentrations (MIC) of different drugs and whole genome sequences of 37 M. hyorhinis isolates were used to find the resistance-related mutations. One MAMA assay was designed to detect the mutation of the 23S rRNA gene at nucleotide position 2058 (Escherichia coli numbering). For further evaluation, the assay was challenged with 17 additional isolates with available MIC data and 15 DNA samples from clinical specimens. The genotypes of the samples were in line with the MIC test results. The developed assay supports the practice of targeted antibiotic usage; hence it may indirectly reduce some bacterial resistance-related public health concerns.


Phytotaxa ◽  
2021 ◽  
Vol 510 (2) ◽  
Author(s):  
DO-HYUN KIM ◽  
HYE JEONG CHOI ◽  
JANG-SEU KI ◽  
OK-MIN LEE

The collection of Pinocchia daecheonga sp. nov. was performed at the Daecheong Lake in Korea, five strains of which with four clones were investigated through light microscopy, transmission electron microscopy and molecular data comprising the 16S rRNA to 23S rRNA gene. P. daecheonga differed from type species P. polymorpha by absence of the polar aerotopes. Investigated stains and four clones of P. daecheonga turned out to be a sister clade to the P. polymorpha according to the phylogenetic analysis of 16S rRNA gene. In addition, the Pinocchia was clustered with the family Leptolyngbyaceae members, genera Leptothoe and Leptoelongatus. 16S–23S rRNA intergenic transcribed spacer (ITS) region of P. daecheonga was found to be substantially distinct to P. polymorpha in terms of the secondary structure and nucleotide sequence composition, which concludes that the Pinocchia daecheonga isolated from the Daecheong Lake is a unique species due to differences in morphology and genetic traits compared to the relative P. polymorpha.


2021 ◽  
Vol 12 ◽  
Author(s):  
George W. Karpin ◽  
Joseph S. Merola ◽  
Joseph O. Falkinham

Spontaneous mutants of Mycobacterium smegmatis strain mc2155 resistant to 1-PG (iridium-L-phenylglycine complex), an antimycobacterial antibiotic, were isolated. Based on the discovery that some 1-PG-resistant mutants (1-PGR) were also resistant to high concentrations of clarithromycin (≥250 μg/ml), but no other anti-mycobacterial antibiotics, the 23S rRNA region spanning the peptidyl transferase domain was sequenced and mutations shown to be localized in the peptidyl transferase domain of the 23S rRNA gene. Measurements showed that 1-PG bound to ribosomes isolated from the 1-PG-sensitive parental strain, but the ribosome binding values for the 1-PGR mutant reduced.


2021 ◽  
Author(s):  
Guilherme S. Hentschke ◽  
Angela Pinheiro ◽  
Vitor Ramos ◽  
Aldo Barreiro ◽  
M. Sofia Costa ◽  
...  

The morphology, 16S rRNA gene phylogeny and the 16S-23S rRNA gene ITS secondary structures of three strains of marine Cyanobacteria, isolated from inter- and subtidal environments from north Portugal were studied, resulting in the description of Zarkia subtidalensis gen. et. sp. nov. (Zarkiaceae fam. nov.) and Romeriopsis marina gen. et. sp. nov (Leptolyngbyaceae). No diacritical morphological characters were found either for the new family or for the new genera. The 16S rRNA gene Maximum Likelihood and Bayesian phylogenies supported that Zarkia and Zarkiaceae are members of the Oscillatoriales, positioned close to Microcoleaceae genera, but distant from Microcoleus. Romeriopsis is positioned within the Leptolyngbyaceae and is closely related to Alkalinema. The secondary structures of the D1-D1′, Box B, V2 and V3 helices corroborate with the phylogenetic results. Furthermore, our study supports previous observations of polyphyletic Oscillatoriales families and reinforces the need for their taxonomical revision.


Sign in / Sign up

Export Citation Format

Share Document