scholarly journals CD4+ T-cell responses to herpes simplex virus type 2 (HSV-2) glycoprotein G are type specific and differ in symptomatic and asymptomatic HSV-2-infected individuals

2004 ◽  
Vol 85 (8) ◽  
pp. 2139-2147 ◽  
Author(s):  
Kristina Eriksson ◽  
Lars Bellner ◽  
Staffan Görander ◽  
Gun-Britt Löwhagen ◽  
Petra Tunbäck ◽  
...  

T-cell recognition of the secreted and membrane-bound portions of the herpes simplex virus type 2 (HSV-2) glycoprotein G (sgG-2 and mgG-2, respectively) was compared in symptomatic and asymptomatic HSV-2-infected individuals and in HSV-2-seronegative controls and the responses with HSV-1 glycoproteins C and E (gC-1 and gE-1) were compared. CD4+ T cells from HSV-2-infected individuals specifically recognized both sgG-2 and mgG-2, whereas HSV-1-infected and HSV-seronegative controls did not respond to these glycoproteins. The responses to gC-1 and gE-1, on the other hand, were not type specific, as blood mononuclear cells from both HSV-1- and HSV-2-infected individuals responded in vitro. There was an association between the status of the infection (symptomatic versus asymptomatic) and the CD4+ T-cell responsiveness. Symptomatic HSV-2-seropositive individuals responded with significantly lower Th1 cytokine production to sgG-2 and mgG-2 than did asymptomatic HSV-2-infected carriers, especially within the HSV-1-negative cohort. No differences in T-cell proliferation were observed between asymptomatic and symptomatic individuals. The results have implications for studies of HSV-2-specific CD4+ T-cell reactivity in general and for analysis of immunological differences between asymptomatic and symptomatic individuals in particular.

2005 ◽  
Vol 150 (7) ◽  
pp. 1393-1406 ◽  
Author(s):  
L. Bellner ◽  
G.-B. Löwhagen ◽  
P. Tunbäck ◽  
I. Nordström ◽  
J.-Å. Liljeqvist ◽  
...  

2022 ◽  
Vol 12 ◽  
Author(s):  
Eduardo I. Tognarelli ◽  
Angello Retamal-Díaz ◽  
Mónica A. Farías ◽  
Luisa F. Duarte ◽  
Tomás F. Palomino ◽  
...  

Herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) infections are life-long and highly prevalent in the human population. These viruses persist in the host, eliciting either symptomatic or asymptomatic infections that may occur sporadically or in a recurrent manner through viral reactivations. Clinical manifestations due to symptomatic infection may be mild such as orofacial lesions, but may also translate into more severe diseases, such as ocular infections that may lead to blindness and life-threatening encephalitis. A key feature of herpes simplex viruses (HSVs) is that they have evolved molecular determinants that hamper numerous components of the host’s antiviral innate and adaptive immune system. Importantly, HSVs infect and negatively modulate the function of dendritic cells (DCs), by inhibiting their T cell-activating capacity and eliciting their apoptosis after infection. Previously, we reported that HSV-2 activates the splicing of the mRNA of XBP1, which is related to the activity of the unfolded protein response (UPR) factor Inositol-Requiring Enzyme 1 alpha (IRE-1α). Here, we sought to evaluate if the activation of the IRE-1α pathway in DCs upon HSV infection may be related to impaired DC function after infection with HSV-1 or HSV-2. Interestingly, the pharmacological inhibition of the endonuclease activity of IRE-1α in HSV-1- and HSV-2-infected DCs significantly reduced apoptosis in these cells and enhanced their capacity to migrate to lymph nodes and activate virus-specific CD4+ and CD8+ T cells. These findings suggest that the activation of the IRE-1α-dependent UPR pathway in HSV-infected DCs may play a significant role in the negative effects that these viruses exert over these cells and that the modulation of this signaling pathway may be relevant for enhancing the function of DCs upon infection with HSVs.


Viruses ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 887
Author(s):  
Edward Trybala ◽  
Nadia Peerboom ◽  
Beata Adamiak ◽  
Malgorzata Krzyzowska ◽  
Jan-Åke Liljeqvist ◽  
...  

The contribution of virus components to liberation of herpes simplex virus type 2 (HSV-2) progeny virions from the surface of infected cells is poorly understood. We report that the HSV-2 mutant deficient in the expression of a mucin-like membrane-associated glycoprotein G (mgG) exhibited defect in the release of progeny virions from infected cells manifested by ~2 orders of magnitude decreased amount of infectious virus in a culture medium as compared to native HSV-2. Electron microscopy revealed that the mgG deficient virions were produced in infected cells and present at the cell surface. These virions could be forcibly liberated to a nearly native HSV-2 level by the treatment of cells with glycosaminoglycan (GAG)-mimicking oligosaccharides. Comparative assessment of the interaction of mutant and native virions with surface-immobilized chondroitin sulfate GAG chains revealed that while the mutant virions associated with GAGs ~fourfold more extensively, the lateral mobility of bound virions was much poorer than that of native virions. These data indicate that the mgG of HSV-2 balances the virus interaction with GAG chains, a feature critical to prevent trapping of the progeny virions at the surface of infected cells.


2013 ◽  
Vol 85 (10) ◽  
pp. 1818-1828 ◽  
Author(s):  
Tohru Daikoku ◽  
Kazuhiro Horiba ◽  
Takashi Kawana ◽  
Masaru Hirano ◽  
Kimiyasu Shiraki

1981 ◽  
Vol 27 (10) ◽  
pp. 1123-1128 ◽  
Author(s):  
José Campione-Piccardo ◽  
William E. Rawls

Thymidine kinase negative (TK−) mutants of HSV-1 were used to attempt to rescue HSV-2 genes from cells biochemically transformed with HSV-2 DNA. The results indicate that the occurrence of a rescue event was less than 7 × 10−7 in this system.


1997 ◽  
Vol 185 (11) ◽  
pp. 1969-1975 ◽  
Author(s):  
Roger Sciammas ◽  
P. Kodukula ◽  
Q. Tang ◽  
R.L. Hendricks ◽  
J.A. Bluestone

Increased numbers of T cell receptor (TCR)-γ/δ cells have been observed in animal models of influenza and sendai virus infections, as well as in patients infected with human immunodeficiency virus and herpes simplex virus type 1 (HSV-1). However, a direct role for TCR-γ/δ cells in protective immunity for pathogenic viral infection has not been demonstrated. To define the role of TCR-γ/δ cells in anti–HSV-1 immunity, TCR-α−/− mice treated with anti– TCR-γ/δ monoclonal antibodies or TCR-γ/δ × TCR-α/β double-deficient mice were infected with HSV-1 by footpad or ocular routes of infection. In both models of HSV-1 infection, TCR-γ/δ cells limited severe HSV-1–induced epithelial lesions and greatly reduced mortality by preventing the development of lethal viral encephalitis. The observed protection resulted from TCR-γ/δ cell–mediated arrest of both viral replication and neurovirulence. The demonstration that TCR-γ/δ cells play an important protective role in murine HSV-1 infections supports their potential contribution to the immune responses in human HSV-1 infection. Thus, this study demonstrates that TCR-γ/δ cells may play an important regulatory role in human HSV-1 infections.


Sign in / Sign up

Export Citation Format

Share Document