scholarly journals Interaction between the respiratory syncytial virus G glycoprotein cytoplasmic domain and the matrix protein

2005 ◽  
Vol 86 (7) ◽  
pp. 1879-1884 ◽  
Author(s):  
Reena Ghildyal ◽  
Dongsheng Li ◽  
Irene Peroulis ◽  
Benjamin Shields ◽  
Phillip G. Bardin ◽  
...  

Paramyxovirus assembly at the cell membrane requires the movement of viral components to budding sites and envelopment of nucleocapsids by cellular membranes containing viral glycoproteins, facilitated by interactions with the matrix protein. The specific protein interactions during assembly of respiratory syncytial virus (RSV) are unknown. Here, the postulated interaction between the RSV matrix protein (M) and G glycoprotein (G) was investigated. Partial co-localization of M with G was demonstrated, but not with a truncated variant lacking the cytoplasmic domain and one-third of the transmembrane domain, in cells infected with recombinant RSV or transfected to express G and M. A series of G mutants was constructed with progressively truncated or modified cytoplasmic domains. Data from co-expression in cells and a cell-free binding assay showed that the N-terminal aa 2–6 of G play a key role in G–M interaction, with serine at position 2 and aspartate at position 6 playing key roles.

2010 ◽  
Vol 98 (3) ◽  
pp. 485a
Author(s):  
John M. Sanderson ◽  
Helen K. McPhee ◽  
Andrew Beeby ◽  
Scott M.D. Watson

2009 ◽  
Vol 83 (11) ◽  
pp. 5353-5362 ◽  
Author(s):  
Reena Ghildyal ◽  
Adeline Ho ◽  
Manisha Dias ◽  
Lydia Soegiyono ◽  
Phillip G. Bardin ◽  
...  

ABSTRACT The respiratory syncytial virus (RSV) matrix (M) protein is localized in the nucleus of infected cells early in infection but is mostly cytoplasmic late in infection. We have previously shown that M localizes in the nucleus through the action of the importin β1 nuclear import receptor. Here, we establish for the first time that M's ability to shuttle to the cytoplasm is due to the action of the nuclear export receptor Crm1, as shown in infected cells, and in cells transfected to express green fluorescent protein (GFP)-M fusion proteins. Specific inhibition of Crm1-mediated nuclear export by leptomycin B increased M nuclear accumulation. Analysis of truncated and point-mutated M derivatives indicated that Crm1-dependent nuclear export of M is attributable to a nuclear export signal (NES) within residues 194 to 206. Importantly, inhibition of M nuclear export resulted in reduced virus production, and a recombinant RSV carrying a mutated NES could not be rescued by reverse genetics. That this is likely to be due to the inability of a nuclear export deficient M to localize to regions of virus assembly is indicated by the fact that a nuclear-export-deficient GFP-M fails to localize to regions of virus assembly when expressed in cells infected with wild-type RSV. Together, our data suggest that Crm1-dependent nuclear export of M is central to RSV infection, representing the first report of such a mechanism for a paramyxovirus M protein and with important implications for related paramyxoviruses.


2002 ◽  
Vol 83 (4) ◽  
pp. 753-757 ◽  
Author(s):  
R. Ghildyal ◽  
J. Mills ◽  
M. Murray ◽  
N. Vardaxis ◽  
J. Meanger

Little is known about the functions of the matrix (M) protein of respiratory syncytial virus (RSV). By analogy with other negative-strand RNA viruses, the M protein should inhibit the viral polymerase prior to packaging and facilitate virion assembly. In this study, localization of the RSV M protein in infected cells and its association with the RSV nucleocapsid complex was investigated. RSV-infected cells were shown to contain characteristic cytoplasmic inclusions. Further analysis showed that these inclusions were localization sites of the M protein as well as the N, P, L and M2-1 proteins described previously. The M protein co-purified with viral ribonucleoproteins (RNPs) from RSV-infected cells. The transcriptase activity of purified RNPs was enhanced by treatment with antibodies to the M protein in a dose-dependent manner. These data suggest that the M protein is associated with RSV nucleocapsids and, like the matrix proteins of other negative-strand RNA viruses, can inhibit virus transcription.


2021 ◽  
Author(s):  
Monika Bajorek ◽  
Marie Galloux ◽  
Charles-Adrien Richard ◽  
Or Szekely ◽  
Rina Rosenzweig ◽  
...  

It was shown previously that the Matrix (M), Phosphoprotein (P), and the Fusion (F) proteins of Respiratory syncytial virus (RSV) are sufficient to produce virus-like particles (VLPs) that resemble the RSV infection-induced virions. However, the exact mechanism and interactions among the three proteins are not known. This work examines the interaction between P and M during RSV assembly and budding. We show that M interacts with P in the absence of other viral proteins in cells using a Split Nano Luciferase assay. By using recombinant proteins, we demonstrate a direct interaction between M and P. By using Nuclear Magnetic Resonance (NMR) we identify three novel M interaction sites on P, namely site I in the αN2 region, site II in the 115-125 region, and the oligomerization domain (OD). We show that the OD, and likely the tetrameric structural organization of P, is required for virus-like filament formation and VLP release. Although sites I and II are not required for VLP formation, they appear to modulate P levels in RSV VLPs. Importance Human RSV is the commonest cause of infantile bronchiolitis in the developed world and of childhood deaths in resource-poor settings. It is a major unmet target for vaccines and anti-viral drugs. The lack of knowledge of RSV budding mechanism presents a continuing challenge for VLP production for vaccine purpose. We show that direct interaction between P and M modulates RSV VLP budding. This further emphasizes P as a central regulator of RSV life cycle, as an essential actor for transcription and replication early during infection and as a mediator for assembly and budding in the later stages for virus production.


2008 ◽  
Vol 89 (3) ◽  
pp. 741-750 ◽  
Author(s):  
Toby M. Ward ◽  
Vicki Traina-Dorge ◽  
Kara A. Davis ◽  
Wayne L. Gray

Recombinant simian varicella viruses (rSVVs) were engineered to express respiratory syncytial virus (RSV) antigens. The RSV surface glycoprotein G and second matrix protein M2 (22k) genes were cloned into the SVV genome, and recombinant viruses were characterized in vitro and in vivo. rSVVs were also engineered to express the membrane-anchored or secreted forms of the RSV-G protein as well as an RSV G lacking its chemokine mimicry motif (CX3C), which may have different effects on priming the host immune response. The RSV genes were efficiently expressed in rSVV/RSV-infected Vero cells as RSV-G and -M2 transcripts were detected by RT-PCR, and RSV antigens were detected by immunofluorescence and immunoblot assays. The rSVVs replicated efficiently in Vero cell culture. Rhesus macaques immunized with rSVV/RSV-G and rSVV/RSV-M2 vaccines produced antibody responses to SVV and RSV antigens. The results demonstrate that recombinant varicella viruses are suitable vectors for the expression of RSV antigens and may represent a novel vaccine strategy for immunization against both pathogens.


2020 ◽  
Author(s):  
Monika Bajorek ◽  
Marie Galloux ◽  
Charles-Adrien Richard ◽  
Or Szekely ◽  
Rina Rosenzweig ◽  
...  

AbstractIt was shown previously that the Matrix (M), Phosphoprotein (P), and the Fusion (F) proteins of Respiratory syncytial virus (RSV) are sufficient to produce virus-like particles (VLPs) that resemble the RSV infection-induced virions. However, the exact mechanism and interactions among the three proteins are not known. This work examines the interaction between P and M during RSV assembly and budding. We show that M interacts with P in the absence of other viral proteins in cells using a Split Nano Luciferase assay. By using recombinant proteins, we demonstrate a direct interaction between M and P. By using Nuclear Magnetic Resonance (NMR) we identify three novel M interaction sites on P, namely site I in the αN2 region, site II in the 115-125 region, and the oligomerization domain (OD). We show that the OD, and likely the tetrameric structural organization of P, is required for virus-like filament formation and VLP release. Although sites I and II are not required for VLP formation, they appear to modulate P levels in RSV VLPs.ImportanceHuman RSV is the commonest cause of infantile bronchiolitis in the developed world and of childhood deaths in resource-poor settings. It is a major unmet target for vaccines and anti-viral drugs. The lack of knowledge of RSV budding mechanism presents a continuing challenge for VLP production for vaccine purpose. We show that direct interaction between P and M modulates RSV VLP budding. This further emphasizes P as a central regulator of RSV life cycle, as an essential actor for transcription and replication early during infection and as a mediator for assembly and budding in the later stages for virus production.


Virology ◽  
2005 ◽  
Vol 337 (2) ◽  
pp. 335-343 ◽  
Author(s):  
John A. Rutigliano ◽  
Michael T. Rock ◽  
Amanda K. Johnson ◽  
James E. Crowe ◽  
Barney S. Graham

Sign in / Sign up

Export Citation Format

Share Document