scholarly journals A Hybrid Metaheuristic DE/CS Algorithm for UCAV Three-Dimension Path Planning

2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Gaige Wang ◽  
Lihong Guo ◽  
Hong Duan ◽  
Heqi Wang ◽  
Luo Liu ◽  
...  

Three-dimension path planning for uninhabited combat air vehicle (UCAV) is a complicated high-dimension optimization problem, which primarily centralizes on optimizing the flight route considering the different kinds of constrains under complicated battle field environments. A new hybrid metaheuristic differential evolution (DE) and cuckoo search (CS) algorithm is proposed to solve the UCAV three-dimension path planning problem. DE is applied to optimize the process of selecting cuckoos of the improved CS model during the process of cuckoo updating in nest. The cuckoos can act as an agent in searching the optimal UCAV path. And then, the UCAV can find the safe path by connecting the chosen nodes of the coordinates while avoiding the threat areas and costing minimum fuel. This new approach can accelerate the global convergence speed while preserving the strong robustness of the basic CS. The realization procedure for this hybrid metaheuristic approach DE/CS is also presented. In order to make the optimized UCAV path more feasible, the B-Spline curve is adopted for smoothing the path. To prove the performance of this proposed hybrid metaheuristic method, it is compared with basic CS algorithm. The experiment shows that the proposed approach is more effective and feasible in UCAV three-dimension path planning than the basic CS model.

2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Gaige Wang ◽  
Lihong Guo ◽  
Hong Duan ◽  
Luo Liu ◽  
Heqi Wang

Path planning for uninhabited combat air vehicle (UCAV) is a complicated high dimension optimization problem, which mainly centralizes on optimizing the flight route considering the different kinds of constrains under complicated battle field environments. Original bat algorithm (BA) is used to solve the UCAV path planning problem. Furthermore, a new bat algorithm with mutation (BAM) is proposed to solve the UCAV path planning problem, and a modification is applied to mutate between bats during the process of the new solutions updating. Then, the UCAV can find the safe path by connecting the chosen nodes of the coordinates while avoiding the threat areas and costing minimum fuel. This new approach can accelerate the global convergence speed while preserving the strong robustness of the basic BA. The realization procedure for original BA and this improved metaheuristic approach BAM is also presented. To prove the performance of this proposed metaheuristic method, BAM is compared with BA and other population-based optimization methods, such as ACO, BBO, DE, ES, GA, PBIL, PSO, and SGA. The experiment shows that the proposed approach is more effective and feasible in UCAV path planning than the other models.


Mathematics ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 171
Author(s):  
Haoran Zhu ◽  
Yunhe Wang ◽  
Zhiqiang Ma ◽  
Xiangtao Li

Path-planning for uninhabited combat air vehicles (UCAV) is a typically complicated global optimization problem. It seeks a superior flight path in a complex battlefield environment, taking into various constraints. Many swarm intelligence (SI) algorithms have recently gained remarkable attention due to their capability to address complex optimization problems. However, different SI algorithms present various performances for UCAV path-planning since each algorithm has its own strengths and weaknesses. Therefore, this study provides an overview of different SI algorithms for UCAV path-planning research. In the experiment, twelve algorithms that published in major journals and conference proceedings are surveyed and then applied to UCAV path-planning. Moreover, to demonstrate the performance of different algorithms in further, we design different scales of problem cases for those comparative algorithms. The experimental results show that UCAV can find the safe path to avoid the threats efficiently based on most SI algorithms. In particular, the Spider Monkey Optimization is more effective and robust than other algorithms in handling the UCAV path-planning problem. The analysis from different perspectives contributes to highlight trends and open issues in the field of UCAVs.


2015 ◽  
Vol 21 (4) ◽  
pp. 949-964 ◽  
Author(s):  
Alejandro Hidalgo-Paniagua ◽  
Miguel A. Vega-Rodríguez ◽  
Joaquín Ferruz ◽  
Nieves Pavón

Robotica ◽  
2021 ◽  
pp. 1-30
Author(s):  
Ümit Yerlikaya ◽  
R.Tuna Balkan

Abstract Instead of using the tedious process of manual positioning, an off-line path planning algorithm has been developed for military turrets to improve their accuracy and efficiency. In the scope of this research, an algorithm is proposed to search a path in three different types of configuration spaces which are rectangular-, circular-, and torus-shaped by providing three converging options named as fast, medium, and optimum depending on the application. With the help of the proposed algorithm, 4-dimensional (D) path planning problem was realized as 2-D + 2-D by using six sequences and their options. The results obtained were simulated and no collision was observed between any bodies in these three options.


Author(s):  
Duane W. Storti ◽  
Debasish Dutta

Abstract We consider the path planning problem for a spherical object moving through a three-dimensional environment composed of spherical obstacles. Given a starting point and a terminal or target point, we wish to determine a collision free path from start to target for the moving sphere. We define an interference index to count the number of configuration space obstacles whose surfaces interfere simultaneously. In this paper, we present algorithms for navigating the sphere when the interference index is ≤ 2. While a global calculation is necessary to characterize the environment as a whole, only local knowledge is needed for path construction.


Sign in / Sign up

Export Citation Format

Share Document