scholarly journals Nanopore sequencing and assembly of a human genome with ultra-long reads

2017 ◽  
Author(s):  
Miten Jain ◽  
S Koren ◽  
J Quick ◽  
AC Rand ◽  
TA Sasani ◽  
...  

AbstractNanopore sequencing is a promising technique for genome sequencing due to its portability, ability to sequence long reads from single molecules, and to simultaneously assay DNA methylation. However until recently nanopore sequencing has been mainly applied to small genomes, due to the limited output attainable. We present nanopore sequencing and assembly of the GM12878 Utah/Ceph human reference genome generated using the Oxford Nanopore MinION and R9.4 version chemistry. We generated 91.2 Gb of sequence data (∼30× theoretical coverage) from 39 flowcells. De novo assembly yielded a highly complete and contiguous assembly (NG50 ∼3Mb). We observed considerable variability in homopolymeric tract resolution between different basecallers. The data permitted sensitive detection of both large structural variants and epigenetic modifications. Further we developed a new approach exploiting the long-read capability of this system and found that adding an additional 5×-coverage of ‘ultra-long’ reads (read N50 of 99.7kb) more than doubled the assembly contiguity. Modelling the repeat structure of the human genome predicts extraordinarily contiguous assemblies may be possible using nanopore reads alone. Portable de novo sequencing of human genomes may be important for rapid point-of-care diagnosis of rare genetic diseases and cancer, and monitoring of cancer progression. The complete dataset including raw signal is available as an Amazon Web Services Open Dataset at: https://github.com/nanopore-wgs-consortium/NA12878.

Author(s):  
Guangtu Gao ◽  
Susana Magadan ◽  
Geoffrey C Waldbieser ◽  
Ramey C Youngblood ◽  
Paul A Wheeler ◽  
...  

Abstract Currently, there is still a need to improve the contiguity of the rainbow trout reference genome and to use multiple genetic backgrounds that will represent the genetic diversity of this species. The Arlee doubled haploid line was originated from a domesticated hatchery strain that was originally collected from the northern California coast. The Canu pipeline was used to generate the Arlee line genome de-novo assembly from high coverage PacBio long-reads sequence data. The assembly was further improved with Bionano optical maps and Hi-C proximity ligation sequence data to generate 32 major scaffolds corresponding to the karyotype of the Arlee line (2 N = 64). It is composed of 938 scaffolds with N50 of 39.16 Mb and a total length of 2.33 Gb, of which ∼95% was in 32 chromosome sequences with only 438 gaps between contigs and scaffolds. In rainbow trout the haploid chromosome number can vary from 29 to 32. In the Arlee karyotype the haploid chromosome number is 32 because chromosomes Omy04, 14 and 25 are divided into six acrocentric chromosomes. Additional structural variations that were identified in the Arlee genome included the major inversions on chromosomes Omy05 and Omy20 and additional 15 smaller inversions that will require further validation. This is also the first rainbow trout genome assembly that includes a scaffold with the sex-determination gene (sdY) in the chromosome Y sequence. The utility of this genome assembly is demonstrated through the improved annotation of the duplicated genome loci that harbor the IGH genes on chromosomes Omy12 and Omy13.


2015 ◽  
Author(s):  
Ivan Sovic ◽  
Mile Sikic ◽  
Andreas Wilm ◽  
Shannon Nicole Fenlon ◽  
Swaine Chen ◽  
...  

Exploiting the power of nanopore sequencing requires the development of new bioinformatics approaches to deal with its specific error characteristics. We present the first nanopore read mapper (GraphMap) that uses a read-funneling paradigm to robustly handle variable error rates and fast graph traversal to align long reads with speed and very high precision (>95%). Evaluation on MinION sequencing datasets against short and long-read mappers indicates that GraphMap increases mapping sensitivity by at least 15-80%. GraphMap alignments are the first to demonstrate consensus calling with <1 error in 100,000 bases, variant calling on the human genome with 76% improvement in sensitivity over the next best mapper (BWA-MEM), precise detection of structural variants from 100bp to 4kbp in length and species and strain-specific identification of pathogens using MinION reads. GraphMap is available open source under the MIT license at https://github.com/isovic/graphmap.


2020 ◽  
Vol 10 (5) ◽  
pp. 1495-1501 ◽  
Author(s):  
Tsuyoshi Tanaka ◽  
Ryo Nishijima ◽  
Shota Teramoto ◽  
Yuka Kitomi ◽  
Takeshi Hayashi ◽  
...  

IR64 is a rice variety with high-yield that has been widely cultivated around the world. IR64 has been replaced by modern varieties in most growing areas. Given that modern varieties are mostly progenies or relatives of IR64, genetic analysis of IR64 is valuable for rice functional genomics. However, chromosome-level genome sequences of IR64 have not been available previously. Here, we sequenced the IR64 genome using synthetic long reads obtained by linked-read sequencing and ultra-long reads obtained by nanopore sequencing. We integrated these data and generated the de novo assembly of the IR64 genome of 367 Mb, equivalent to 99% of the estimated size. Continuity of the IR64 genome assembly was improved compared with that of a publicly available IR64 genome assembly generated by short reads only. We annotated 41,458 protein-coding genes, including 657 IR64-specific genes, that are missing in other high-quality rice genome assemblies IRGSP-1.0 of japonica cultivar Nipponbare or R498 of indica cultivar Shuhui498. The IR64 genome assembly will serve as a genome resource for rice functional genomics as well as genomics-driven and/or molecular breeding.


2019 ◽  
Author(s):  
Mitchell R. Vollger ◽  
Glennis A. Logsdon ◽  
Peter A. Audano ◽  
Arvis Sulovari ◽  
David Porubsky ◽  
...  

AbstractThe sequence and assembly of human genomes using long-read sequencing technologies has revolutionized our understanding of structural variation and genome organization. We compared the accuracy, continuity, and gene annotation of genome assemblies generated from either high-fidelity (HiFi) or continuous long-read (CLR) datasets from the same complete hydatidiform mole human genome. We find that the HiFi sequence data assemble an additional 10% of duplicated regions and more accurately represent the structure of tandem repeats, as validated with orthogonal analyses. As a result, an additional 5 Mbp of pericentromeric sequences are recovered in the HiFi assembly, resulting in a 2.5-fold increase in the NG50 within 1 Mbp of the centromere (HiFi 480.6 kbp, CLR 191.5 kbp). Additionally, the HiFi genome assembly was generated in significantly less time with fewer computational resources than the CLR assembly. Although the HiFi assembly has significantly improved continuity and accuracy in many complex regions of the genome, it still falls short of the assembly of centromeric DNA and the largest regions of segmental duplication using existing assemblers. Despite these shortcomings, our results suggest that HiFi may be the most effective stand-alone technology for de novo assembly of human genomes.


2021 ◽  
Author(s):  
Alexey Kolesnikov ◽  
Sidharth Goel ◽  
Maria Nattestad ◽  
Taedong Yun ◽  
Gunjan Baid ◽  
...  

Every human inherits one copy of the genome from their mother and another from their father. Parental inheritance helps us understand the transmission of traits and genetic diseases, which often involve de novo variants and rare recessive alleles. Here we present DeepTrio, which learns to analyze child-mother-father trios from the joint sequence information, without explicit encoding of inheritance priors. DeepTrio learns how to weigh sequencing error, mapping error, and de novo rates and genome context directly from the sequence data. DeepTrio has higher accuracy on both Illumina and PacBio HiFi data when compared to DeepVariant. Improvements are especially pronounced at lower coverages (with 20x DeepTrio roughly equivalent to 30x DeepVariant). As DeepTrio learns directly from data, we also demonstrate extensions to exome calling solely by changing the training data. DeepTrio includes pre-trained models for Illumina WGS, Illumina exome, and PacBio HiFi.


2018 ◽  
Vol 36 (4) ◽  
pp. 338-345 ◽  
Author(s):  
Miten Jain ◽  
Sergey Koren ◽  
Karen H Miga ◽  
Josh Quick ◽  
Arthur C Rand ◽  
...  

2020 ◽  
Author(s):  
Vasanthan Jayakumar ◽  
Osamu Nishimura ◽  
Mitsutaka Kadota ◽  
Naoki Hirose ◽  
Hiromi Sano ◽  
...  

AbstractCynomolgus macaque (Macaca fascicularis) and common marmoset (Callithrix jacchus) have been widely used in human biomedical research. Their genomes were sequenced and assembled initially using short-read sequences, with the advent of massively parallel sequencing. However, the resulting contig sequences tended to remain fragmentary, and long-standing primate genome assemblies used the human genome as a reference for ordering and orienting the assembled fragments into chromosomes. Here we performed de novo genome assembly of these two species without any human genome-based bias observed in the genome assemblies released earlier. Firstly we assembled PacBio long reads, and the resultant contigs were scaffolded with Hi-C data. The scaffolded sequences obtained were further refined based on assembly results of alternate de novo assemblies and Hi-C contact maps by resolving identified inconsistencies. The final assemblies achieved N50 lengths of 149 Mb and 137 Mb for cynomolgus macaque and common marmoset, respectively, and the numbers of scaffolds longer than 10Mb are equal to their chromosome numbers. The high fidelity of our assembly is ascertained by concordance to the BAC-end read pairs observed for common marmoset, as well as a high resemblance of their karyotypic organization. Our assembly of cynomolgus macaque outperformed all the available assemblies of this species in terms of contiguity. The chromosome-scale genome assemblies produced in this study are valuable resources for non-human primate models and provide an important baseline in human biomedical research.


Author(s):  
Robert Vaser ◽  
Mile Šikić

We present new methods for the improvement of long-read de novo genome assembly incorporated into a straightforward tool called Raven (https://github.com/lbcb-sci/raven). Compared with other assemblers, Raven is one of two fastest, it reconstructs the sequenced genome in the least amount of fragments, has better or comparable accuracy, and maintains similar performance for various genomes. Raven takes 500 CPU hours to assemble a 44x human genome dataset in only 259 fragments.


Sign in / Sign up

Export Citation Format

Share Document