scholarly journals The Genomic Architecture of a Rapid Island Radiation: Recombination Rate Variation, Chromosome Structure, and Genome Assembly of the Hawaiian Cricket Laupala

2017 ◽  
Author(s):  
Thomas Blankers ◽  
Kevin P. Oh ◽  
Aureliano Bombarely ◽  
Kerry L. Shaw

ABSTRACTPhenotypic evolution and speciation depend on recombination in many ways. Within populations, recombination can promote adaptation by bringing together favorable mutations and decoupling beneficial and deleterious alleles. As populations diverge, cross-over can give rise to maladapted recombinants and impede or reverse diversification. Suppressed recombination due to genomic rearrangements, modifier alleles, and intrinsic chromosomal properties may offer a shield against maladaptive gene flow eroding co-adapted gene complexes. Both theoretical and empirical results support this relationship. However, little is known about this relationship in the context of behavioral isolation, where co-evolving signals and preferences are the major hybridization barrier. Here we examine the genomic architecture of recently diverged, sexually isolated Hawaiian swordtail crickets (Laupala). We assemble a de novo genome and generate three dense linkage maps from interspecies crosses. In line with expectations based on the species’ recent divergence and successful interbreeding in the lab, the linkage maps are highly collinear and show no evidence for large-scale chromosomal rearrangements. The maps were then used to anchor the assembly to pseudomolecules and estimate recombination rates across the genome. We tested the hypothesis that loci involved in behavioral isolation (song and preference divergence) are in regions of low interspecific recombination. Contrary to our expectations, a genomic region where a male song QTL co-localizes with a female preference QTL was not associated with particularly low recombination rates. This study provides important novel genomic resources for an emerging evolutionary genetics model system and suggests that trait-preference co-evolution is not necessarily facilitated by locally suppressed recombination.

2017 ◽  
Vol 372 (1736) ◽  
pp. 20160461 ◽  
Author(s):  
Christoph R. Haag ◽  
Loukas Theodosiou ◽  
Roula Zahab ◽  
Thomas Lenormand

In most sexual, diploid eukaryotes, at least one crossover occurs between each pair of homologous chromosomes during meiosis, presumably in order to ensure proper segregation. Well-known exceptions to this rule are species in which one sex does not recombine and specific chromosomes lacking crossover. We review other possible exceptions, including species with chromosome maps of less than 50 cM in one or both sexes. We discuss the idea that low recombination rates may favour sex–asex transitions, or, alternatively may be a consequence of it. We then show that a yet undescribed species of brine shrimp Artemia from Kazakhstan ( A . sp. Kazakhstan), the closest known relative of the asexual Artemia parthenogenetica , has one of the shortest genetic linkage maps known. Based on a family of 42 individuals and 589 RAD markers, we find that many linkage groups are considerably shorter than 50 cM, suggesting either no obligate crossover or crossovers concentrated at terminal positions with little effect on recombination. We contrast these findings with the published map of the more distantly related sexual congener, A. franciscana , and conclude that the study of recombination in non-model systems is important to understand the evolutionary causes and consequences of recombination. This article is part of the themed issue ‘Evolutionary causes and consequences of recombination rate variation in sexual organisms’.


2018 ◽  
Author(s):  
Frédéric J.J. Chain ◽  
Jullien M. Flynn ◽  
James K. Bull ◽  
Melania E. Cristescu

AbstractMutation rate variation has been under intense investigation for decades. Despite these efforts, little is known about the extent to which environmental stressors accelerate mutation rates and influence the genetic load of populations. Moreover, most studies have focused on point mutations rather than large-scale deletions and duplications (copy number variations or “CNVs”). We estimated mutation rates inDaphnia pulexexposed to low levels of environmental stressors as well as the effect of selection onde novomutations. We conducted a mutation accumulation (MA) experiment in which selection was minimized, coupled with an experiment in which a population was propagated under competitive conditions in a benign environment. After an average of 103 generations of MA propagation, we sequenced 60 genomes and found significantly accelerated rates of deletions and duplications in MA lines exposed to ecologically relevant concentrations of metals. Whereas control lines had gene deletion and duplication rates comparable to other multicellular eukaryotes (1.8 × 10−6per gene per generation), a mixture of nickel and copper increased rates fourfold. The realized mutation rate under selection was reduced to 0.4x that of control MA lines, providing evidence that CNVs contribute to mutational load. Our CNV breakpoint analysis revealed that nonhomologous recombination associated with regions of DNA fragility is the primary source of CNVs, plausibly linking metal-induced DNA strand breaks with higher CNV rates. Our findings suggest that environmental stress, in particular multiple stressors, can have profound effects on large-scale mutation rates and mutational load of populations.


2020 ◽  
Author(s):  
Trenell Mosley ◽  
H. Richard Johnston ◽  
David J Cutler ◽  
Michael E Zwick ◽  
Jennifer G Mulle

Abstract Genomic disorders are caused by structural rearrangements of the genome that generally occur during meiosis. Often the rearrangements result in large-scale (> 1 kb) copy number variants (CNV; deletions or duplications ≥ 1 kb). Recurrent pathogenic CNVs harbor similar breakpoints in multiple unrelated individuals and are primarily formed via non-allelic homologous recombination (NAHR). Several pathogenic NAHR-mediated recurrent CNV loci demonstrate biases for parental origin of de novo CNVs. However, the mechanism underlying these biases is not well understood. Here we have curated parent of origin data for multiple pathogenic CNV loci and demonstrate a significant association between sex-specific differences in meiotic recombination and parental origin biases at these loci. Our results suggest that parental-origin of CNVs is largely controlled by sex-specific recombination rates, and highlight the need to consider these differences when investigating mechanisms that cause structural variation.


2017 ◽  
Vol 372 (1736) ◽  
pp. 20160456 ◽  
Author(s):  
Deborah Charlesworth

In species with genetic sex-determination, the chromosomes carrying the sex-determining genes have often evolved non-recombining regions and subsequently evolved the full set of characteristics denoted by the term ‘sex chromosomes’. These include size differences, creating chromosomal heteromorphism, and loss of gene functions from one member of the chromosome pair. Such characteristics and changes have been widely reviewed, and underlie molecular genetic approaches that can detect sex chromosome regions. This review deals mainly with the evolution of new non-recombining regions, focusing on how certain evolutionary situations select for suppressed recombination (rather than the proximate mechanisms causing suppressed recombination between sex chromosomes). Particularly important is the likely involvement of sexually antagonistic polymorphisms in genome regions closely linked to sex-determining loci. These may be responsible for the evolutionary strata of sex chromosomes that have repeatedly formed by recombination suppression evolving across large genome regions. More studies of recently evolved non-recombining sex-determining regions should help to test this hypothesis empirically, and may provide evidence about whether other situations can sometimes lead to sex-linked regions evolving. Similarities with other non-recombining genome regions are discussed briefly, to illustrate common features of the different cases, though no general properties apply to all of them. This article is part of the themed issue ‘Evolutionary causes and consequences of recombination rate variation in sexual organisms’.


2018 ◽  
Author(s):  
James M. Howie ◽  
Rupert Mazzucco ◽  
Thomas Taus ◽  
Viola Nolte ◽  
Christian Schlötterer

ABSTRACTMeiotic recombination is crucial for chromosomal segregation, and facilitates the spread of beneficial and removal of deleterious mutations. Recombination rates frequently vary along chromosomes and Drosophila melanogaster exhibits a remarkable pattern. Recombination rates gradually decrease towards centromeres and telomeres, with dramatic impact on levels of variation in natural populations. Two close sister species, D. simulans and D. mauritiana do not only have higher recombination rates, but also exhibit a much more homogeneous recombination rate that only drops sharply close to centromeres and telomeres. Because certain sequence motifs are associated with recombination rate variation in D. melanogaster, we tested whether the difference in recombination landscape between D. melanogaster and D. simulans can be explained by the genomic distribution of recombination-rate associated sequence motifs. We constructed the first high resolution recombination map for D. simulans, and searched for motifs linked with high recombination in both sister species. We identified five consensus motifs, present in either species. While the association between motif density and recombination is strong and positive in D. melanogaster, the results are equivocal in D. simulans. Despite the strong association in D. melanogaster, we do not find a decreasing density of these repeat motifs towards centromeres and telomeres. We conclude that the density of recombination-associated repeat motifs cannot explain the large-scale recombination landscape in D. melanogaster, nor the differences to D. simulans. The strong association seen for the sequence motifs in D. melanogaster likely reflects their impact influencing local differences in recombination rates along the genome.


2020 ◽  
Author(s):  
Trenell Mosley ◽  
H. Richard Johnston ◽  
David J. Cutler ◽  
Michael E. Zwick ◽  
Jennifer G. Mulle

SUMMARYGenomic disorders are caused by structural rearrangements of the genome that generally occur during meiosis1. Often the rearrangements result in large-scale (> 1 kb) copy number variants (CNV; deletions or duplications ≥ 1 kb)2,3. Recurrent pathogenic CNVs harbor similar breakpoints in multiple unrelated individuals and are primarily formed via non-allelic homologous recombination (NAHR)3,4. Several pathogenic NAHR-mediated recurrent CNV loci demonstrate biases for parental origin of de novo CNVs5–9. However, the mechanism underlying these biases is not well understood. Here we have curated parent of origin data for multiple pathogenic CNV loci and demonstrate a significant association between sex-specific differences in meiotic recombination and parental origin biases at these loci. Our results suggest that parental-origin of CNVs is largely controlled by sex-specific recombination rates and bring into light the need to consider these differences when seeking to determine the factors underlying risk for structural variation.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Trenell J. Mosley ◽  
H. Richard Johnston ◽  
David J. Cutler ◽  
Michael E. Zwick ◽  
Jennifer G. Mulle

Abstract Background Structural rearrangements of the genome, which generally occur during meiosis and result in large-scale (> 1 kb) copy number variants (CNV; deletions or duplications ≥ 1 kb), underlie genomic disorders. Recurrent pathogenic CNVs harbor similar breakpoints in multiple unrelated individuals and are primarily formed via non-allelic homologous recombination (NAHR). Several pathogenic NAHR-mediated recurrent CNV loci demonstrate biases for parental origin of de novo CNVs. However, the mechanism underlying these biases is not well understood. Methods We performed a systematic, comprehensive literature search to curate parent of origin data for multiple pathogenic CNV loci. Using a regression framework, we assessed the relationship between parental CNV origin and the male to female recombination rate ratio. Results We demonstrate significant association between sex-specific differences in meiotic recombination and parental origin biases at these loci (p = 1.07 × 10–14). Conclusions Our results suggest that parental origin of CNVs is largely influenced by sex-specific recombination rates and highlight the need to consider these differences when investigating mechanisms that cause structural variation.


2020 ◽  
Author(s):  
Salvador Guardiola ◽  
Monica Varese ◽  
Xavier Roig ◽  
Jesús Garcia ◽  
Ernest Giralt

<p>NOTE: This preprint has been retracted by consensus from all authors. See the retraction notice in place above; the original text can be found under "Version 1", accessible from the version selector above.</p><p><br></p><p>------------------------------------------------------------------------</p><p><br></p><p>Peptides, together with antibodies, are among the most potent biochemical tools to modulate challenging protein-protein interactions. However, current structure-based methods are largely limited to natural peptides and are not suitable for designing target-specific binders with improved pharmaceutical properties, such as macrocyclic peptides. Here we report a general framework that leverages the computational power of Rosetta for large-scale backbone sampling and energy scoring, followed by side-chain composition, to design heterochiral cyclic peptides that bind to a protein surface of interest. To showcase the applicability of our approach, we identified two peptides (PD-<i>i</i>3 and PD-<i>i</i>6) that target PD-1, a key immune checkpoint, and work as protein ligand decoys. A comprehensive biophysical evaluation confirmed their binding mechanism to PD-1 and their inhibitory effect on the PD-1/PD-L1 interaction. Finally, elucidation of their solution structures by NMR served as validation of our <i>de novo </i>design approach. We anticipate that our results will provide a general framework for designing target-specific drug-like peptides.<i></i></p>


2020 ◽  
Author(s):  
Salvador Guardiola ◽  
Monica Varese ◽  
Xavier Roig ◽  
Jesús Garcia ◽  
Ernest Giralt

<p>NOTE: This preprint has been retracted by consensus from all authors. See the retraction notice in place above; the original text can be found under "Version 1", accessible from the version selector above.</p><p><br></p><p>------------------------------------------------------------------------</p><p><br></p><p>Peptides, together with antibodies, are among the most potent biochemical tools to modulate challenging protein-protein interactions. However, current structure-based methods are largely limited to natural peptides and are not suitable for designing target-specific binders with improved pharmaceutical properties, such as macrocyclic peptides. Here we report a general framework that leverages the computational power of Rosetta for large-scale backbone sampling and energy scoring, followed by side-chain composition, to design heterochiral cyclic peptides that bind to a protein surface of interest. To showcase the applicability of our approach, we identified two peptides (PD-<i>i</i>3 and PD-<i>i</i>6) that target PD-1, a key immune checkpoint, and work as protein ligand decoys. A comprehensive biophysical evaluation confirmed their binding mechanism to PD-1 and their inhibitory effect on the PD-1/PD-L1 interaction. Finally, elucidation of their solution structures by NMR served as validation of our <i>de novo </i>design approach. We anticipate that our results will provide a general framework for designing target-specific drug-like peptides.<i></i></p>


2020 ◽  
Author(s):  
Salvador Guardiola ◽  
Monica Varese ◽  
Xavier Roig ◽  
Jesús Garcia ◽  
Ernest Giralt

<p>NOTE: This preprint has been retracted by consensus from all authors. See the retraction notice in place above; the original text can be found under "Version 1", accessible from the version selector above.</p><p><br></p><p>------------------------------------------------------------------------</p><p><br></p><p>Peptides, together with antibodies, are among the most potent biochemical tools to modulate challenging protein-protein interactions. However, current structure-based methods are largely limited to natural peptides and are not suitable for designing target-specific binders with improved pharmaceutical properties, such as macrocyclic peptides. Here we report a general framework that leverages the computational power of Rosetta for large-scale backbone sampling and energy scoring, followed by side-chain composition, to design heterochiral cyclic peptides that bind to a protein surface of interest. To showcase the applicability of our approach, we identified two peptides (PD-<i>i</i>3 and PD-<i>i</i>6) that target PD-1, a key immune checkpoint, and work as protein ligand decoys. A comprehensive biophysical evaluation confirmed their binding mechanism to PD-1 and their inhibitory effect on the PD-1/PD-L1 interaction. Finally, elucidation of their solution structures by NMR served as validation of our <i>de novo </i>design approach. We anticipate that our results will provide a general framework for designing target-specific drug-like peptides.<i></i></p>


Sign in / Sign up

Export Citation Format

Share Document