behavioral isolation
Recently Published Documents


TOTAL DOCUMENTS

52
(FIVE YEARS 14)

H-INDEX

12
(FIVE YEARS 2)

Author(s):  
Ying Xing Feng ◽  
Nur Syahirah Roslan ◽  
Lila Iznita Izhar ◽  
Muhammad Abdul Rahman ◽  
Ibrahima Faye ◽  
...  

Studies showed that introversion is the strongest personality trait related to perceived social isolation (loneliness), which can predict various complications beyond objective isolation such as living alone. Lonely individuals are more likely to resort to social media for instantaneous comfort, but it is not a perpetual solution. Largely negative implications including poorer interpersonal relationship and depression were reported due to excessive social media usage. Conversational task is an established intervention to improve verbal communication, cognitive and behavioral adaptation among lonely individuals. Despite that behavioral benefits have been reported, it is unclear if they are accompanied by objective benefits underlying physiological changes. Here, we investigate the physiological signals from 28 healthy individuals during a conversational task. Participants were ranked by trait extraversion, where greater introversion is associated with increased susceptibility to perceived social isolation as compared to participants with greater extraversion as controls. We found that introverts had a greater tendency to be neurotic, and these participants also exhibited significant differences in task-related electrodermal activity (EDA), heart rate (HR) and HR variability (HRV) as compared to controls. Notably, resting state HRV among individuals susceptible to perceived loneliness was below the healthy thresholds established in literature. Conversational task with a stranger significantly increased HRV among individuals susceptible to isolation up to levels as seen in controls. Since HRV is also elevated by physical exercise and administration of oxytocin hormone (one form of therapy for behavioral isolation), conversational therapy among introverts could potentially confer physiological benefits to ameliorate social isolation and loneliness. Our findings also suggest that although the recent pandemic has changed how people are interacting typically, we should maintain a healthy dose of social interaction innovatively.


2021 ◽  
Vol 118 (36) ◽  
pp. e2103963118
Author(s):  
Christophe Dufresnes ◽  
Alan Brelsford ◽  
Daniel L. Jeffries ◽  
Glib Mazepa ◽  
Tomasz Suchan ◽  
...  

The genetic architecture of speciation, i.e., how intrinsic genomic incompatibilities promote reproductive isolation (RI) between diverging lineages, is one of the best-kept secrets of evolution. To directly assess whether incompatibilities arise in a limited set of large-effect speciation genes, or in a multitude of loci, we examined the geographic and genomic landscapes of introgression across the hybrid zones of 41 pairs of frog and toad lineages in the Western Palearctic region. As the divergence between lineages increases, phylogeographic transitions progressively become narrower, and larger parts of the genome resist introgression. This suggests that anuran speciation proceeds through a gradual accumulation of multiple barrier loci scattered across the genome, which ultimately deplete hybrid fitness by intrinsic postzygotic isolation, with behavioral isolation being achieved only at later stages. Moreover, these loci were disproportionately sex linked in one group (Hyla) but not in others (Rana and Bufotes), implying that large X-effects are not necessarily a rule of speciation with undifferentiated sex chromosomes. The highly polygenic nature of RI and the lack of hemizygous X/Z chromosomes could explain why the speciation clock ticks slower in amphibians compared to other vertebrates. The clock-like dynamics of speciation combined with the analytical focus on hybrid zones offer perspectives for more standardized practices of species delimitation.


Author(s):  
Ying Xing Feng ◽  
Nur Syahirah Roslan ◽  
Lila Iznita Izhar ◽  
Muhammad Abdul Rahman ◽  
Ibrahima Faye ◽  
...  

Studies showed that introversion is the strongest personality trait related to perceived social isolation (loneliness), which can predict various complications beyond objective isolation such as living alone. Lonely individuals are more likely resort to social media for instantaneous comfort, but it is not a perpetual solution. Largely negative implications including poorer interpersonal relationship and depression were reported due to excessive social media usage. Conversational task is an established intervention to improve verbal communication, cognitive and behavioral adaptation among lonely individuals. Despite that behavioral benefits have been reported, it is unclear if they are accompanied by objective benefits underlying physiological changes. Here, we investigate the physiological signals from 28 healthy individuals during a conversational task. Participants were ranked by trait extraversion, where greater introversion is associated with increased susceptibility to perceived social isolation as compared to participants with greater extraversion as controls. We found that introverts had a greater tendency to be neurotic, and these participants also exhibited significant differences in task-related electrodermal activity (EDA), heart rate (HR) and HR variability (HRV) as compared to controls. Notably, resting state HRV among individuals susceptible to perceived loneliness was below the healthy thresholds established in literature. Conversational task with a stranger significantly increased HRV among individuals susceptible to isolation up to levels as seen in controls. Since HRV is also elevated by physical exercise and administration of oxytocin hormone (one form of therapy for behavioral isolation), conversational therapy among introverts could potentially confer physiological benefits to ameliorate social isolation and loneliness. Our findings also suggest that although the recent pandemic have changed how people are interacting typically, we should maintain a healthy dose of social interaction innovatively.


Author(s):  
Phillip Shults ◽  
Matthew Hopken ◽  
Pierre-André Eyer ◽  
Alexander Blumenfeld ◽  
Mariana Mateos ◽  
...  

The level of gene flow between diverging lineages ultimately determines the outcome of a speciation event. If secondary contact occurs before this process is complete, reproductive isolation barriers must exist or evolve to prevent hybridization. The selective pressures facilitating and maintaining genetic divergence do not always involve an observable phenotypic response, thus cryptic species form. The inability to distinguish between sibling species can be a particularly serious problem in groups responsible for pathogen transmission. Culicoides biting midges occur almost world-wide and vector many disease-causing pathogens that affect wildlife and livestock. In North America, the C. variipennis species complex contains three currently recognized species, only one of which is a vector, and limited molecular and morphological differences have hindered vector surveillance. Here, genomic methods were used to investigate speciation and genetic structure within this complex. Single nucleotide polymorphism (SNP) data were generated using ddRAD sequencing for 206 individuals originating from 17 locations throughout the United States and Canada. Clustering analyses consistently suggest the occurrence of five putative species with significant differentiation occurring in both sympatric and allopatric populations. Evidence of hybridization was detected in three different species pairings, indicating a lack of pre-zygotic reproductive isolation within the complex. Mitochondrial genes were used to trace the hybrid parentage of these individuals, which illuminated discordance with the SNP data. In this study, we highlight the potential role of geographic, ecological, and behavioral isolation in speciation and in maintaining species boundaries, despite hybridization and long range dispersal.


Science ◽  
2021 ◽  
Vol 371 (6536) ◽  
pp. eabc0256 ◽  
Author(s):  
Sheela P. Turbek ◽  
Melanie Browne ◽  
Adrián S. Di Giacomo ◽  
Cecilia Kopuchian ◽  
Wesley M. Hochachka ◽  
...  

Behavioral isolation can catalyze speciation and permit the slow accumulation of additional reproductive barriers between co-occurring organisms. We illustrate how this process occurs by examining the genomic and behavioral bases of pre-mating isolation between two bird species (Sporophila hypoxantha and the recently discovered S. iberaensis) that belong to the southern capuchino seedeaters, a recent, rapid radiation characterized by variation in male plumage coloration and song. Although these two species co-occur without obvious ecological barriers to reproduction, we document behaviors indicating species recognition by song and plumage traits and strong assortative mating associated with genomic regions underlying male plumage patterning. Plumage differentiation likely originated through the reassembly of standing genetic variation, indicating how novel sexual signals may quickly arise and maintain species boundaries.


Insects ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 203
Author(s):  
Xue-Yuan Di ◽  
Bin Yan ◽  
Cheng-Xu Wu ◽  
Xiao-Fei Yu ◽  
Jian-Feng Liu ◽  
...  

Host plant preference during the larval stage may help shape not only phenotypic plasticity but also behavioral isolation. We assessed the effects of diet on population parameters and mate choice in Spodoptera litura. We raised larvae fed on tobacco, Chinese cabbage, or an artificial diet, and we observed the shortest developmental time and highest fecundity in individuals fed the artificial diet. However, survival rates were higher for larvae on either of the natural diets. Population parameters including intrinsic rate of increase and finite rate of increase were significantly higher with the artificial diet, but this diet led to a lower mean generation time. Copulation duration, copulation time, and number of eggs reared significantly differed between diets. In terms of mate choice, females on the artificial diet rarely mated with males fed on a natural host. Our results support the hypothesis that different diets may promote behavioral isolation, affecting mating outcomes. Thus, findings for populations fed an artificial diet may not reflect findings for populations in the field.


2020 ◽  
Author(s):  
Natalie S Roberts ◽  
Tamra C Mendelson

Abstract In sexually dimorphic species characterized by exaggerated male ornamentation, behavioral isolation is often attributed to female preferences for conspecific male signals. Yet, in a number of sexually dimorphic species, male mate choice also results in behavioral isolation. In many of these cases, the female traits that mediate species boundaries are unclear. Females in sexually dimorphic species typically lack many of the elaborate traits that are present in males and that are often used for taxonomic classification of species. In a diverse and largely sexually dimorphic group of fishes called darters (Percidae: Etheostoma), male mate choice contributes to behavioral isolation between a number of species; however, studies addressing which female traits males prefer are lacking. In this study, we identified the dominant female pattern for two sympatric species, Etheostoma zonale and Etheostoma barrenense, using pattern energy analysis, and we used discriminate function analysis to identify which aspects of female patterning can reliably classify species. We then tested the role of female features in male mate choice for E. zonale, by measuring male preference for computer animations displaying the identified (species-specific) conspecific features. We found that the region above the lateral line is important in mediating male mate preferences, with males spending a significantly greater proportion of time with animations exhibiting conspecific female patterning in this region than with animations exhibiting heterospecific female patterning. Our results suggest that the aspects of female phenotypes that are the target of male mate choice are different from the conspicuous male phenotypes that traditionally characterize species.


2020 ◽  
Author(s):  
Michelle E John ◽  
Rebecca C Fuller

Abstract Reinforcement can occur when maladaptive hybridization in sympatry favors the evolution of conspecific preferences and target traits that promote behavioral isolation (BI). In many systems, enhanced BI is due to increased female preference for conspecifics. In others, BI is driven by male preference, and in other systems both sexes exert preferences. Some of these patterns can be attributed to classic sex-specific costs and benefits of preference. Alternatively, sex differences in conspecific preference can emerge due to asymmetric postzygotic isolation (e.g., hybrid offspring from female A × male B have lower fitness than hybrid offspring from female B × male A), which can lead to asymmetric BI (e.g., female A and male B are less likely to mate than female B and male A). Understanding reinforcement requires understanding how conspecific preferences evolve in sympatry. Yet, estimating conspecific preferences can be difficult when both sexes are choosy. In this study, we use Lucania killifish to test the hypothesis that patterns of reinforcement are driven by asymmetric postzygotic isolation between species. If true, we predicted that sympatric female Lucania goodei and sympatric male L. parva should have lower levels of BI compared with their sympatric counterparts, as they produce hybrid offspring with the highest fitness. To address the problem of measuring BI when both sexes are choosy, we inferred the contribution to BI of each partner using assays where one sex in the mating pair comes from an allopatric population with potentially low preference, whereas the other comes from a sympatric population with high preference. For one hybrid cross direction, we found that both female L. parva and male L. goodei have high contributions to BI in sympatry. In the other hybrid cross direction, we found that only female L. goodei contribute to BI. Sympatric male L. parva readily engaged in hybrid spawnings with allopatric L. goodei females. These results indicate that both asymmetric postzygotic isolation and the traditional sex-specific costs to preference likely affect the nature of selection on conspecific preferences and target traits.


Author(s):  
Natalie S. Roberts ◽  
Tamra C. Mendelson

AbstractIn sexually dimorphic species characterized by exaggerated male ornamentation, behavioral isolation is often attributed to female preferences for conspecific male signals. Yet, in a number of sexually dimorphic species, male mate choice also results in behavioral isolation. In many of these cases, the female traits that mediate species boundaries are unclear. Females in sexually dimorphic species typically lack many of the elaborate traits that are present in males and that are often diagnostic of species. In a diverse and largely sexually dimorphic group of fishes called darters (Percidae: Etheostoma), male mate choice contributes to behavioral isolation between a number of species; however, it is not clear which female traits males prefer. In the current study, we identified the dominant female pattern for two sympatric species, Etheostoma zonale and E. barrenense, using pattern energy analysis, and we used discriminate function analysis to identify which aspects of female patterning can reliably classify species. We then tested the role of female features in male mate choice for E. zonale, by measuring male preference for computer animations displaying the identified (species-specific) conspecific features as well as the dominant male pattern that is preferred by females. We found that the region above the lateral line is important in mediating male mate preferences, with males spending significantly more time with animations exhibiting conspecific female patterning in this region than with animations exhibiting heterospecific female patterning. Our results suggest that the aspects of female phenotypes that are the target of male mate choice are different from the male phenotypes that characterize species. This research highlights the importance of using objective measures in the study of behavioral isolation via male mate choice.


Sign in / Sign up

Export Citation Format

Share Document