scholarly journals Advanced whole genome sequencing and analysis of fetal genomes from amniotic fluid

2017 ◽  
Author(s):  
Qing Mao ◽  
Robert Chin ◽  
Weiwei Xie ◽  
Yuqing Deng ◽  
Huixin Xu ◽  
...  

Amniocentesis is typically performed to identify large chromosomal abnormalities within the fetus. Here we demonstrate that it is feasible to generate an accurate whole genome sequence (WGS) of a fetus from an amniotic sample. DNA from cells and the amniotic fluid were isolated and sequenced from 31 amniocenteses. Concordance of variant calls between the two DNA sources and with parental libraries was high. Two fetal genomes were found to harbor potentially detrimental variants in CHD8 and LRP1, variations in these genes have been associated with Autism Spectrum Disorder (ASD) and Keratosis pilaris atrophicans, respectively. We also discovered drug sensitivities and carrier information of fetuses for a variety of diseases. In this study, we demonstrate for the first time the sequencing of the whole genome of fetuses from amniotic fluid and show that much more information than large chromosomal abnormalities can be gained from an amniocentesis.

2018 ◽  
Vol 50 (5) ◽  
pp. 727-736 ◽  
Author(s):  
Donna M. Werling ◽  
Harrison Brand ◽  
Joon-Yong An ◽  
Matthew R. Stone ◽  
Lingxue Zhu ◽  
...  

2013 ◽  
Vol 93 (2) ◽  
pp. 249-263 ◽  
Author(s):  
Yong-hui Jiang ◽  
Ryan K.C. Yuen ◽  
Xin Jin ◽  
Mingbang Wang ◽  
Nong Chen ◽  
...  

2016 ◽  
Vol 171 (8) ◽  
pp. 1049-1056 ◽  
Author(s):  
Céline Helsmoortel ◽  
Sigrid M.A. Swagemakers ◽  
Geert Vandeweyer ◽  
Andrew P. Stubbs ◽  
Ivo Palli ◽  
...  

2021 ◽  
Author(s):  
Dario Fernández Do Porto ◽  
Johana Monteserin ◽  
Josefina Campos ◽  
Ezequiel J Sosa ◽  
Mario Matteo ◽  
...  

Abstract BackgroundWhole-genome sequencing has shown that the Mycobacterium tuberculosis infection process can be more heterogeneous than previously thought. Compartmentalized infections, exogenous reinfections, and microevolution are manifestations of this clonal complexity. The analysis of the mechanisms causing the microevolution —the genetic variability of M. tuberculosis at short time scales— of a parental strain into clonal variants with a patient is a relevant issue that has not been yet completely addressed. To our knowledge, a whole genome sequence microevolution analysis in a single patient with inadequate adherence to treatment has not been previously reported.Case Presentations In this work, we applied whole genome sequencing for a more in-depth analysis of the microevolution of a parental Mycobacterium tuberculosis strain into clonal variants within a patient with poor treatment compliance in Argentina. We analyzed the whole-genome sequence of 8 consecutive Mycobacterium. tuberculosis isolates obtained from a patient within 57-month of intermittent therapy. Nineteen mutations (9 short-term, 10 fixed variants) emerged, most of them associated with drug resistance. The first isolate was already resistant to isoniazid, rifampicin, and streptomycin, thereafter the strain developed resistance to fluoroquinolones and pyrazinamide. Surprisingly, isolates remained susceptible to the pro-drug ethionamide after acquiring a frameshift mutation in ethA, a gene required for its activation. We also found a novel variant, (T-54G), in the 5' untranslated region of whiB7 (T-54G), a region allegedly related to kanamycin resistance. Notably, discrepancies between canonical and phage-based susceptibility testing to kanamycin were previously found for the isolate harboring this mutation. In our patience, microevolution was mainly driven by drug selective pressure. Rare short-term mutations fixed together with resistance-conferring mutations during therapy.ConclusionsThis report highlights the relevance of whole-genome sequencing in the clinic for characterization of pre-XDR and MDR resistance profile, particularly in patients with incomplete and/or intermittent treatment.


PLoS ONE ◽  
2015 ◽  
Vol 10 (2) ◽  
pp. e0116358 ◽  
Author(s):  
Sergio I. Nemirovsky ◽  
Marta Córdoba ◽  
Jonathan J. Zaiat ◽  
Sabrina P. Completa ◽  
Patricia A. Vega ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document