scholarly journals Retrosplenial cortex and its role in spatial cognition

2017 ◽  
Author(s):  
Anna Mitchell ◽  
Rafal Czajkowksi ◽  
Ningyu Zhang ◽  
Kate Jeffery ◽  
Andrew Nelson

AbstractRetrosplenial cortex (RSC) is a region within the posterior neocortical system, heavily interconnected with an array of brain networks, both cortical and subcortical, that is engaged by a myriad of cognitive tasks. Although there is no consensus as to its precise function, evidence from both human and animal studies clearly points to a role in spatial cognition. However, the spatial processing impairments that follow RSC damage are not straightforward to characterise, leading to difficulties in defining the exact nature of its role. In the present article we review this literature and classify the types of ideas that have been put forward into three broad, somewhat overlapping classes: (i) Learning of landmark location, stability and permanence; (ii) Integration between spatial reference frames, and (iii) Consolidation and retrieval of spatial knowledge (“schemas”). We evaluate these models and suggest ways to test them, before briefly discussing whether the spatial function may be a subset of a more general function in episodic memory.

2018 ◽  
Vol 2 ◽  
pp. 239821281875709 ◽  
Author(s):  
Anna S. Mitchell ◽  
Rafal Czajkowski ◽  
Ningyu Zhang ◽  
Kate Jeffery ◽  
Andrew J. D. Nelson

Retrosplenial cortex is a region within the posterior neocortical system, heavily interconnected with an array of brain networks, both cortical and subcortical, that is, engaged by a myriad of cognitive tasks. Although there is no consensus as to its precise function, evidence from both human and animal studies clearly points to a role in spatial cognition. However, the spatial processing impairments that follow retrosplenial cortex damage are not straightforward to characterise, leading to difficulties in defining the exact nature of its role. In this article, we review this literature and classify the types of ideas that have been put forward into three broad, somewhat overlapping classes: (1) learning of landmark location, stability and permanence; (2) integration between spatial reference frames; and (3) consolidation and retrieval of spatial knowledge (schemas). We evaluate these models and suggest ways to test them, before briefly discussing whether the spatial function may be a subset of a more general function in episodic memory.


2013 ◽  
Vol 36 (5) ◽  
pp. 556-556
Author(s):  
Kate A. Longstaffe ◽  
Bruce M. Hood ◽  
Iain D. Gilchrist

AbstractJeffery et al. accurately identify the importance of developing an understanding of spatial reference frames in a three-dimensional world. We examine human spatial cognition via a unique paradigm that investigates the role of saliency and adjusting reference frames. This includes work with adults, typically developing children, and children who develop non-typically (e.g., those with autism).


2018 ◽  
Author(s):  
Klaus Gramann ◽  
Friederike U. Hohlefeld ◽  
Lukas Gehrke ◽  
Marius Klug

SummaryThe retrosplenial complex (RSC) plays a crucial role in spatial orientation by computing heading direction and translating between distinct spatial reference frames. While invasive studies allow investigating heading computation in moving animals, established non-invasive analyses of human brain dynamics are restricted to stationary setups. To investigate the role of the RSC in heading computation of actively moving humans, we used a Mobile Brain/Body Imaging approach synchronizing electroencephalography with motion capture and virtual reality. Data from physically rotating participants were contrasted with rotations based only on visual flow. Varying rotation velocities were accompanied by pronounced beta synchronization during physical rotation. In addition, heading computation based only on visual flow replicated alpha desynchronization in the RSC, which was absent during physical rotation. These results suggest an involvement of the human RSC in heading computation based on vestibular input and implicate revisiting traditional findings of alpha desynchronization during spatial orientation in movement-restricted participants.Heading computation is fundamental for spatial orientation in the human and other species. The registration of moment-to-moment changes in orientation with respect to an allocentric reference direction provides information about an animal’s current heading relative to the environment. This is accomplished by the integration of vestibular, proprioceptive, and visual signals providing information about linear and angular velocity signals of the head, the relative position of the head with respect to the trunk, and information about stable aspects of the environment, respectively.1 Single cell recordings in freely behaving animals identified several brain structures involved in heading computation, including the retrosplenial cortex (RSC).2, 3 The RSC receives input from the visual system and from head direction cells in the thalamic nuclei.4 It also hosts subpopulations of heading-sensitive cells that are sentient to local features of the environment, while other cells exhibit mixed activity patterns related to both local and global heading computation.5 These findings suggest that neural activity in the RSC subserves the integration of information about the local and global environment, integrating egocentrically coded landmark cues based on sensory fusion (vision and proprioception)6 with allocentric heading information originating from the Papez circuit.7 This allows the compensation of the rotational offset between egocentric and allocentric spatial representations, routed from the parietal and medial temporal cortices, providing the necessary information for translating between both egocentric and allocentric spatial representational frames in the RSC.8


Author(s):  
Steven M. Weisberg ◽  
Anjan Chatterjee

Abstract Background Reference frames ground spatial communication by mapping ambiguous language (for example, navigation: “to the left”) to properties of the speaker (using a Relative reference frame: “to my left”) or the world (Absolute reference frame: “to the north”). People’s preferences for reference frame vary depending on factors like their culture, the specific task in which they are engaged, and differences among individuals. Although most people are proficient with both reference frames, it is unknown whether preference for reference frames is stable within people or varies based on the specific spatial domain. These alternatives are difficult to adjudicate because navigation is one of few spatial domains that can be naturally solved using multiple reference frames. That is, while spatial navigation directions can be specified using Absolute or Relative reference frames (“go north” vs “go left”), other spatial domains predominantly use Relative reference frames. Here, we used two domains to test the stability of reference frame preference: one based on navigating a four-way intersection; and the other based on the sport of ultimate frisbee. We recruited 58 ultimate frisbee players to complete an online experiment. We measured reaction time and accuracy while participants solved spatial problems in each domain using verbal prompts containing either Relative or Absolute reference frames. Details of the task in both domains were kept as similar as possible while remaining ecologically plausible so that reference frame preference could emerge. Results We pre-registered a prediction that participants would be faster using their preferred reference frame type and that this advantage would correlate across domains; we did not find such a correlation. Instead, the data reveal that people use distinct reference frames in each domain. Conclusion This experiment reveals that spatial reference frame types are not stable and may be differentially suited to specific domains. This finding has broad implications for communicating spatial information by offering an important consideration for how spatial reference frames are used in communication: task constraints may affect reference frame choice as much as individual factors or culture.


1997 ◽  
Vol 352 (1360) ◽  
pp. 1515-1524 ◽  
Author(s):  
J. Bures ◽  
A. A. Fenton ◽  
Yu. Kaminsky ◽  
J. Rossier ◽  
B. Sacchetti ◽  
...  

Navigation by means of cognitive maps appears to require the hippocampus; hippocampal place cells (PCs) appear to store spatial memories because their discharge is confined to cell–specific places called firing fields (FFs). Experiments with rats manipulated idiothetic and landmark–related information to understand the relationship between PC activity and spatial cognition. Rotating a circular arena in the light caused a discrepancy between these cues. This discrepancy caused most FFs to disappear in both the arena and room reference frames. However, FFs persisted in the rotating arena frame when the discrepancy was reduced by darkness or by a card in the arena. The discrepancy was increased by ’field clamping’the rat in a room–defined FF location by rotations that countered its locomotion. Most FFs dissipated and reappeared an hour or more after the clamp. Place–avoidance experiments showed that navigation uses independent idiothetic and exteroceptive memories. Rats learned to avoid the unmarked footshock region within a circular arena. When acquired on the stable arena in the light, the location of the punishment was learned by using both room and idiothetic cues; extinction in the dark transferred to the following session in the light. If, however, extinction occurred during rotation, only the arena–frame avoidance was extinguished in darkness; the room–defined location was avoided when the lights were turned back on. Idiothetic memory of room–defined avoidance was not formed during rotation in light; regardless of rotation, there was no avoidance when the lights were turned off, but room–frame avoidance reappeared when the lights were turned back on. The place–preference task rewarded visits to an allocentric target location with a randomly dispersed pellet. The resulting behaviour alternated between random pellet searching and target–directed navigation, making it possible to examine PC correlates of these two classes of spatial behaviour. The independence of idiothetic and exteroceptive spatial memories and the disruption of PC firing during rotation suggest that PCs may not be necessary for spatial cognition; this idea can be tested by recordings during the place–avoidance and preference tasks.


2010 ◽  
Vol 10 (7) ◽  
pp. 1063-1063
Author(s):  
J. C. Dessing ◽  
J. D. Crawford ◽  
W. P. Medendorp

Sign in / Sign up

Export Citation Format

Share Document