scholarly journals Dissociation of exteroceptive and idiothetic orientation cues⋮ effect on hippocampal place cells and place navigation

1997 ◽  
Vol 352 (1360) ◽  
pp. 1515-1524 ◽  
Author(s):  
J. Bures ◽  
A. A. Fenton ◽  
Yu. Kaminsky ◽  
J. Rossier ◽  
B. Sacchetti ◽  
...  

Navigation by means of cognitive maps appears to require the hippocampus; hippocampal place cells (PCs) appear to store spatial memories because their discharge is confined to cell–specific places called firing fields (FFs). Experiments with rats manipulated idiothetic and landmark–related information to understand the relationship between PC activity and spatial cognition. Rotating a circular arena in the light caused a discrepancy between these cues. This discrepancy caused most FFs to disappear in both the arena and room reference frames. However, FFs persisted in the rotating arena frame when the discrepancy was reduced by darkness or by a card in the arena. The discrepancy was increased by ’field clamping’the rat in a room–defined FF location by rotations that countered its locomotion. Most FFs dissipated and reappeared an hour or more after the clamp. Place–avoidance experiments showed that navigation uses independent idiothetic and exteroceptive memories. Rats learned to avoid the unmarked footshock region within a circular arena. When acquired on the stable arena in the light, the location of the punishment was learned by using both room and idiothetic cues; extinction in the dark transferred to the following session in the light. If, however, extinction occurred during rotation, only the arena–frame avoidance was extinguished in darkness; the room–defined location was avoided when the lights were turned back on. Idiothetic memory of room–defined avoidance was not formed during rotation in light; regardless of rotation, there was no avoidance when the lights were turned off, but room–frame avoidance reappeared when the lights were turned back on. The place–preference task rewarded visits to an allocentric target location with a randomly dispersed pellet. The resulting behaviour alternated between random pellet searching and target–directed navigation, making it possible to examine PC correlates of these two classes of spatial behaviour. The independence of idiothetic and exteroceptive spatial memories and the disruption of PC firing during rotation suggest that PCs may not be necessary for spatial cognition; this idea can be tested by recordings during the place–avoidance and preference tasks.

2013 ◽  
Vol 36 (5) ◽  
pp. 556-556
Author(s):  
Kate A. Longstaffe ◽  
Bruce M. Hood ◽  
Iain D. Gilchrist

AbstractJeffery et al. accurately identify the importance of developing an understanding of spatial reference frames in a three-dimensional world. We examine human spatial cognition via a unique paradigm that investigates the role of saliency and adjusting reference frames. This includes work with adults, typically developing children, and children who develop non-typically (e.g., those with autism).


2015 ◽  
Vol 114 (6) ◽  
pp. 3211-3219 ◽  
Author(s):  
J. J. Tramper ◽  
W. P. Medendorp

It is known that the brain uses multiple reference frames to code spatial information, including eye-centered and body-centered frames. When we move our body in space, these internal representations are no longer in register with external space, unless they are actively updated. Whether the brain updates multiple spatial representations in parallel, or whether it restricts its updating mechanisms to a single reference frame from which other representations are constructed, remains an open question. We developed an optimal integration model to simulate the updating of visual space across body motion in multiple or single reference frames. To test this model, we designed an experiment in which participants had to remember the location of a briefly presented target while being translated sideways. The behavioral responses were in agreement with a model that uses a combination of eye- and body-centered representations, weighted according to the reliability in which the target location is stored and updated in each reference frame. Our findings suggest that the brain simultaneously updates multiple spatial representations across body motion. Because both representations are kept in sync, they can be optimally combined to provide a more precise estimate of visual locations in space than based on single-frame updating mechanisms.


Physiology ◽  
2000 ◽  
Vol 15 (5) ◽  
pp. 233-240 ◽  
Author(s):  
Jan Bures ◽  
André A. Fenton

Understanding of the neurophysiology of cognition is advancing through the study of how animals navigate and understand space. Manipulating various classes of spatial information and recording from hippocampal neurons provides a robust model for understanding how the brain stores and constructs the spatial memories that are critical for organizing daily experience.


2021 ◽  
Vol 12 ◽  
Author(s):  
Lei Zheng ◽  
Jan-Gabriel Dobroschke ◽  
Stefan Pollmann

We investigated if contextual cueing can be guided by egocentric and allocentric reference frames. Combinations of search configurations and external frame orientations were learned during a training phase. In Experiment 1, either the frame orientation or the configuration was rotated, thereby disrupting either the allocentric or egocentric and allocentric predictions of the target location. Contextual cueing survived both of these manipulations, suggesting that it can overcome interference from both reference frames. In contrast, when changed orientations of the external frame became valid predictors of the target location in Experiment 2, we observed contextual cueing as long as one reference frame was predictive of the target location, but contextual cueing was eliminated when both reference frames were invalid. Thus, search guidance in repeated contexts can be supported by both egocentric and allocentric reference frames as long as they contain valid information about the search goal.


2017 ◽  
Author(s):  
Anna Mitchell ◽  
Rafal Czajkowksi ◽  
Ningyu Zhang ◽  
Kate Jeffery ◽  
Andrew Nelson

AbstractRetrosplenial cortex (RSC) is a region within the posterior neocortical system, heavily interconnected with an array of brain networks, both cortical and subcortical, that is engaged by a myriad of cognitive tasks. Although there is no consensus as to its precise function, evidence from both human and animal studies clearly points to a role in spatial cognition. However, the spatial processing impairments that follow RSC damage are not straightforward to characterise, leading to difficulties in defining the exact nature of its role. In the present article we review this literature and classify the types of ideas that have been put forward into three broad, somewhat overlapping classes: (i) Learning of landmark location, stability and permanence; (ii) Integration between spatial reference frames, and (iii) Consolidation and retrieval of spatial knowledge (“schemas”). We evaluate these models and suggest ways to test them, before briefly discussing whether the spatial function may be a subset of a more general function in episodic memory.


2009 ◽  
pp. 299-303 ◽  
Author(s):  
T Petrásek ◽  
A Stuchlík

Neurotransmitter substrate of spatial cognition belongs to current topics in behavioral neuroscience. The present study examined the effects of serotonin depletion with p-chlorophenylalanine on learning of rats in active place avoidance, a spatial task requiring allothetic mapping and cognitive coordination and highly dependent upon hippocampus. Serotonin depletion transiently increased locomotor activity in response to footshocks, but it did not change the avoidance efficiency measured by three spatial parameters. These results suggest that serotonin neurotransmission is not crucial for cognitive coordination and allothetic learning, i.e. the processes, which are crucial for active place avoidance performance.


2017 ◽  
Author(s):  
Diogo Santos-Pata ◽  
Alex Escuredo ◽  
Zenon Mathews ◽  
Paul F.M.J. Verschure

ABSTRACTInsects are great explorers, able to navigate through long-distance trajectories and successfully find their way back. Their navigational routes cross dynamic environments suggesting adaptation to novel configurations. Arthropods and vertebrates share neural organizational principles and it has been shown that rodents modulate their neural spatial representation accordingly with environmental changes. However, it is unclear whether insects reflexively adapt to environmental changes or retain memory traces of previously explored situations. We sought to disambiguate between insect behavior at environmental novel situations and reconfiguration conditions. An immersive mixed-reality multi-sensory setup was built to replicate multi-sensory cues. We have designed an experimental setup where female crickets Gryllus Bimaculatus were trained to move towards paired auditory and visual cues during primarily phonotactic driven behavior. We hypothesized that insects were capable of identifying sensory modifications in known environments. Our results show that, regardless of the animals history, novel situation conditions did not compromise the animals performance and navigational directionality towards a novel target location. However, in trials where visual and auditory stimuli were spatially decoupled, the animals heading variability towards a previously known location significantly increased. Our findings showed that crickets are able to behaviorally manifest environmental reconfiguration, suggesting the encoding for spatial representation.


2018 ◽  
Vol 91 (1) ◽  
pp. 85-99 ◽  
Author(s):  
Gonzalo Tejera ◽  
Martin Llofriu ◽  
Alejandra Barrera ◽  
Alfredo Weitzenfeld

Sign in / Sign up

Export Citation Format

Share Document