scholarly journals Biopipe: A Lightweight System Enabling Comparison of Bioinformatics Tools and Workflows

2017 ◽  
Author(s):  
Saima Sultana Tithi ◽  
Jiyoung Lee ◽  
Liqing Zhang ◽  
Song Li ◽  
Na Meng

AbstractAnalyzing next generation sequencing data always requires researchers to install many tools, prepare input data compliant to the required data format, and execute the tools in specific orders. Such tool installation and workflow execution process is tedious and error-prone, and becomes very challenging when researchers need to compare multiple alternative tool chains. To mitigate this problem, we developed a new lightweight and portable system, Biopipe, to simplify the creation and execution of bioinformatics tools and workflows, and to further enable the comparison between alternative tools or workflows. Biopipe allows users to create and edit workflows with user-friendly web interfaces, and automates tool installation as well as workflow synthesis by downloading and executing predefined Docker images. With Biopipe, biologists can easily experiment with and compare different bioinformatics tools and workflows without much computer science knowledge. There are mainly two parts in Biopipe: a web application and a standalone Java application. They are freely available at http://bench.cs.vt.edu:8282/Biopipe-Workflow-Editor-0.0.1/index.xhtml and https://code.vt.edu/saima5/[email protected] informationSupplementary data are available online.

2016 ◽  
Author(s):  
Stephen G. Gaffney ◽  
Jeffrey P. Townsend

ABSTRACTSummaryPathScore quantifies the level of enrichment of somatic mutations within curated pathways, applying a novel approach that identifies pathways enriched across patients. The application provides several user-friendly, interactive graphic interfaces for data exploration, including tools for comparing pathway effect sizes, significance, gene-set overlap and enrichment differences between projects.Availability and ImplementationWeb application available at pathscore.publichealth.yale.edu. Site implemented in Python and MySQL, with all major browsers supported. Source code available at github.com/sggaffney/pathscore with a GPLv3 [email protected] InformationAdditional documentation can be found at http://pathscore.publichealth.yale.edu/faq.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11333
Author(s):  
Daniyar Karabayev ◽  
Askhat Molkenov ◽  
Kaiyrgali Yerulanuly ◽  
Ilyas Kabimoldayev ◽  
Asset Daniyarov ◽  
...  

Background High-throughput sequencing platforms generate a massive amount of high-dimensional genomic datasets that are available for analysis. Modern and user-friendly bioinformatics tools for analysis and interpretation of genomics data becomes essential during the analysis of sequencing data. Different standard data types and file formats have been developed to store and analyze sequence and genomics data. Variant Call Format (VCF) is the most widespread genomics file type and standard format containing genomic information and variants of sequenced samples. Results Existing tools for processing VCF files don’t usually have an intuitive graphical interface, but instead have just a command-line interface that may be challenging to use for the broader biomedical community interested in genomics data analysis. re-Searcher solves this problem by pre-processing VCF files by chunks to not load RAM of computer. The tool can be used as standalone user-friendly multiplatform GUI application as well as web application (https://nla-lbsb.nu.edu.kz). The software including source code as well as tested VCF files and additional information are publicly available on the GitHub repository (https://github.com/LabBandSB/re-Searcher).


2017 ◽  
Author(s):  
Julian Garneau ◽  
Florence Depardieu ◽  
Louis-Charles Fortier ◽  
David Bikard ◽  
Marc Monot

ABSTRACTBacteriophages are the most abundant viruses on earth and display an impressive genetic as well as morphologic diversity. Among those, the most common order of phages is the Caudovirales, whose viral particles packages linear double stranded DNA (dsDNA). In this study we investigated how the information gathered by high throughput sequencing technologies can be used to determine the DNA termini and packaging mechanisms of dsDNA phages. The wet-lab procedures traditionally used for this purpose rely on the identification and cloning of restriction fragment which can be delicate and cumbersome. Here, we developed a theoretical and statistical framework to analyze DNA termini and phage packaging mechanisms using next-generation sequencing data. Our methods, implemented in the PhageTerm software, work with sequencing reads in fastq format and the corresponding assembled phage genome.PhageTerm was validated on a set of phages with well-established packaging mechanisms representative of the termini diversity: 5’cos (lambda), 3’cos (HK97), pac (P1), headful without a pac site (T4), DTR (T7) and host fragment (Mu). In addition, we determined the termini of 9Clostridium difficilephages and 6 phages whose sequences where retrieved from the sequence read archive (SRA).A direct graphical interface is available as a Galaxy wrapper version athttps://galaxy.pasteur.frand a standalone version is accessible athttps://sourceforge.net/projects/phageterm/.


2019 ◽  
Vol 35 (22) ◽  
pp. 4803-4805 ◽  
Author(s):  
Raul Ossio ◽  
O Isaac Garcia-Salinas ◽  
Diego Said Anaya-Mancilla ◽  
Jair S Garcia-Sotelo ◽  
Luis A Aguilar ◽  
...  

Abstract Motivation Identifying disease-causing variants from exome sequencing projects remains a challenging task that often requires bioinformatics expertise. Here we describe a user-friendly graphical application that allows medical professionals and bench biologists to prioritize and visualize genetic variants from human exome sequencing data. Results We have implemented VCF/Plotein, a graphical, fully interactive web application able to display exome sequencing data in VCF format. Gene and variant information is extracted from Ensembl. Cross-referencing with external databases and application-based gene and variant filtering have also been implemented. All data processing is done locally by the user’s CPU to ensure the security of patient data. Availability and implementation Freely available on the web at https://vcfplotein.liigh.unam.mx. Website implemented in JavaScript using the Vue.js framework, with all major browsers supported. Source code freely available for download at https://github.com/raulossio/VCF-plotein. Supplementary information Supplementary data are available at Bioinformatics online.


2020 ◽  
Author(s):  
Stevenn Volant ◽  
Pierre Lechat ◽  
Perrine Woringer ◽  
Laurence Motreff ◽  
Christophe Malabat ◽  
...  

Abstract BackgroundComparing the composition of microbial communities among groups of interest (e.g., patients vs healthy individuals) is a central aspect in microbiome research. It typically involves sequencing, data processing, statistical analysis and graphical representation of the detected signatures. Such an analysis is normally obtained by using a set of different applications that require specific expertise for installation, data processing and in some case, programming skills. ResultsHere, we present SHAMAN, an interactive web application we developed in order to facilitate the use of (i) a bioinformatic workflow for metataxonomic analysis, (ii) a reliable statistical modelling and (iii) to provide among the largest panels of interactive visualizations as compared to the other options that are currently available. SHAMAN is specifically designed for non-expert users who may benefit from using an integrated version of the different analytic steps underlying a proper metagenomic analysis. The application is freely accessible at http://shaman.pasteur.fr/, and may also work as a standalone application with a Docker container (aghozlane/shaman), conda and R. The source code is written in R and is available at https://github.com/aghozlane/shaman. Using two datasets (a mock community sequencing and published 16S rRNA metagenomic data), we illustrate the strengths of SHAMAN in quickly performing a complete metataxonomic analysis. ConclusionsWe aim with SHAMAN to provide the scientific community with a platform that simplifies reproducible quantitative analysis of metagenomic data.


2019 ◽  
Author(s):  
Anthony Federico ◽  
Stefano Monti

ABSTRACTSummaryGeneset enrichment is a popular method for annotating high-throughput sequencing data. Existing tools fall short in providing the flexibility to tackle the varied challenges researchers face in such analyses, particularly when analyzing many signatures across multiple experiments. We present a comprehensive R package for geneset enrichment workflows that offers multiple enrichment, visualization, and sharing methods in addition to novel features such as hierarchical geneset analysis and built-in markdown reporting. hypeR is a one-stop solution to performing geneset enrichment for a wide audience and range of use cases.Availability and implementationThe most recent version of the package is available at https://github.com/montilab/hypeR.Supplementary informationComprehensive documentation and tutorials, are available at https://montilab.github.io/hypeR-docs.


Author(s):  
Frédéric Lemoine ◽  
Luc Blassel ◽  
Jakub Voznica ◽  
Olivier Gascuel

AbstractMotivationThe first cases of the COVID-19 pandemic emerged in December 2019. Until the end of February 2020, the number of available genomes was below 1,000, and their multiple alignment was easily achieved using standard approaches. Subsequently, the availability of genomes has grown dramatically. Moreover, some genomes are of low quality with sequencing/assembly errors, making accurate re-alignment of all genomes nearly impossible on a daily basis. A more efficient, yet accurate approach was clearly required to pursue all subsequent bioinformatics analyses of this crucial data.ResultshCoV-19 genomes are highly conserved, with very few indels and no recombination. This makes the profile HMM approach particularly well suited to align new genomes, add them to an existing alignment and filter problematic ones. Using a core of ∼2,500 high quality genomes, we estimated a profile using HMMER, and implemented this profile in COVID-Align, a user-friendly interface to be used online or as standalone via Docker. The alignment of 1,000 genomes requires less than 20mn on our cluster. Moreover, COVID-Align provides summary statistics, which can be used to determine the sequencing quality and evolutionary novelty of input genomes (e.g. number of new mutations and indels).Availabilityhttps://covalign.pasteur.cloud, hub.docker.com/r/evolbioinfo/[email protected], [email protected] informationSupplementary information is available at Bioinformatics online.


2021 ◽  
Author(s):  
Renato R. M. Oliveira ◽  
Raissa L S Silva ◽  
Gisele L. Nunes ◽  
Guilherme Oliveira

DNA metabarcoding is an emerging monitoring method capable of assessing biodiversity from environmental samples (eDNA). Advances in computational tools have been required due to the increase of Next-Generation Sequencing data. Tools for DNA metabarcoding analysis, such as MOTHUR, QIIME, Obitools, and mBRAVE have been widely used in ecological studies. However, some difficulties are encountered when there is a need to use custom databases. Here we present PIMBA, a PIpeline for MetaBarcoding Analysis, which allows the use of customized databases, as well as other reference databases used by the softwares mentioned here. PIMBA is an open-source and user-friendly pipeline that consolidates all analyses in just three command lines.


2019 ◽  
Vol 35 (21) ◽  
pp. 4525-4527 ◽  
Author(s):  
Alex X Lu ◽  
Taraneh Zarin ◽  
Ian S Hsu ◽  
Alan M Moses

Abstract Summary We introduce YeastSpotter, a web application for the segmentation of yeast microscopy images into single cells. YeastSpotter is user-friendly and generalizable, reducing the computational expertise required for this critical preprocessing step in many image analysis pipelines. Availability and implementation YeastSpotter is available at http://yeastspotter.csb.utoronto.ca/. Code is available at https://github.com/alexxijielu/yeast_segmentation. Supplementary information Supplementary data are available at Bioinformatics online.


Author(s):  
Zeynep Baskurt ◽  
Scott Mastromatteo ◽  
Jiafen Gong ◽  
Richard F Wintle ◽  
Stephen W Scherer ◽  
...  

Abstract Integration of next generation sequencing data (NGS) across different research studies can improve the power of genetic association testing by increasing sample size and can obviate the need for sequencing controls. If differential genotype uncertainty across studies is not accounted for, combining data sets can produce spurious association results. We developed the Variant Integration Kit for NGS (VikNGS), a fast cross-platform software package, to enable aggregation of several data sets for rare and common variant genetic association analysis of quantitative and binary traits with covariate adjustment. VikNGS also includes a graphical user interface, power simulation functionality and data visualization tools. Availability The VikNGS package can be downloaded at http://www.tcag.ca/tools/index.html. Supplementary information Supplementary data are available at Bioinformatics online.


Sign in / Sign up

Export Citation Format

Share Document