scholarly journals VCF/Plotein: visualization and prioritization of genomic variants from human exome sequencing projects

2019 ◽  
Vol 35 (22) ◽  
pp. 4803-4805 ◽  
Author(s):  
Raul Ossio ◽  
O Isaac Garcia-Salinas ◽  
Diego Said Anaya-Mancilla ◽  
Jair S Garcia-Sotelo ◽  
Luis A Aguilar ◽  
...  

Abstract Motivation Identifying disease-causing variants from exome sequencing projects remains a challenging task that often requires bioinformatics expertise. Here we describe a user-friendly graphical application that allows medical professionals and bench biologists to prioritize and visualize genetic variants from human exome sequencing data. Results We have implemented VCF/Plotein, a graphical, fully interactive web application able to display exome sequencing data in VCF format. Gene and variant information is extracted from Ensembl. Cross-referencing with external databases and application-based gene and variant filtering have also been implemented. All data processing is done locally by the user’s CPU to ensure the security of patient data. Availability and implementation Freely available on the web at https://vcfplotein.liigh.unam.mx. Website implemented in JavaScript using the Vue.js framework, with all major browsers supported. Source code freely available for download at https://github.com/raulossio/VCF-plotein. Supplementary information Supplementary data are available at Bioinformatics online.

2018 ◽  
Author(s):  
Raul Ossio ◽  
Diego Said Anaya-Mancilla ◽  
O. Isaac Garcia-Salinas ◽  
Jair S. Garcia-Sotelo ◽  
Luis A. Aguilar ◽  
...  

ABSTRACTPurposeTo create a user-friendly web application that allows researchers, medical professionals and patients to easily and securely view, filter and interact with human exome sequencing data in the Variant Call Format (VCF).MethodsWe have created VCF/Plotein, a web application written entirely in JavaScript using the Vue.js framework, available at http://vcfplotein.liigh.unam.mx. After a VCF is loaded, gene and variant information is extracted from Ensembl, and cross-referencing with external databases is performed via the Elasticsearch search engine. Support for application-based gene and variant filtering has also been implemented. Interactive graphs are created using the D3.js library. All data processing is done locally in the user’s CPU to ensure the security of patient data.ResultsVCF/Plotein allows users to interactively view and filter VCF files without needing any bioinformatics knowledge. A number of features make it especially suited for the medical community, such as its speed, security, the ability to filter by disease or gene function, and the ease with which information may be shared with collaborators/co-workers.ConclusionVCF/Plotein is a novel web application that allows users to easily and interactively filter and display exome sequencing information, and that is especially suited for bench researchers, medical professionals and patients.


2017 ◽  
Author(s):  
Saima Sultana Tithi ◽  
Jiyoung Lee ◽  
Liqing Zhang ◽  
Song Li ◽  
Na Meng

AbstractAnalyzing next generation sequencing data always requires researchers to install many tools, prepare input data compliant to the required data format, and execute the tools in specific orders. Such tool installation and workflow execution process is tedious and error-prone, and becomes very challenging when researchers need to compare multiple alternative tool chains. To mitigate this problem, we developed a new lightweight and portable system, Biopipe, to simplify the creation and execution of bioinformatics tools and workflows, and to further enable the comparison between alternative tools or workflows. Biopipe allows users to create and edit workflows with user-friendly web interfaces, and automates tool installation as well as workflow synthesis by downloading and executing predefined Docker images. With Biopipe, biologists can easily experiment with and compare different bioinformatics tools and workflows without much computer science knowledge. There are mainly two parts in Biopipe: a web application and a standalone Java application. They are freely available at http://bench.cs.vt.edu:8282/Biopipe-Workflow-Editor-0.0.1/index.xhtml and https://code.vt.edu/saima5/[email protected] informationSupplementary data are available online.


2019 ◽  
Vol 35 (21) ◽  
pp. 4519-4521 ◽  
Author(s):  
Youssef Darzi ◽  
Yuta Yamate ◽  
Takuji Yamada

Abstract Summary Functional annotations and their hierarchical classification are widely used in omics workflows to build novel insight upon existing biological knowledge. Currently, a plethora of tools is available to explore omics datasets at the level of functional annotations, but there is a lack of feature rich and user-friendly tools that help scientists take advantage of their hierarchical classification for additional and often invaluable insights. Here, we present FuncTree2, a user-friendly web application that turns hierarchical classifications into interactive and highly customizable radial trees, and enables researchers to visualize their data simultaneously on all its levels. FuncTree2 features mapping of data from multiple samples and several navigation features like zooming, panning, re-rooting and collapsing of nodes or levels. Availability and implementation FuncTree2 is freely available at https://bioviz.tokyo/functree2/ as a web application and a REST API. Source code is available on GitHub https://github.com/yamada-lab/functree-ng. Supplementary information Supplementary data are available at Bioinformatics online.


Genes ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 1001
Author(s):  
Jiyoon Han ◽  
Joonhong Park

A simultaneous analysis of nucleotide changes and copy number variations (CNVs) based on exome sequencing data was demonstrated as a potential new first-tier diagnosis strategy for rare neuropsychiatric disorders. In this report, using depth-of-coverage analysis from exome sequencing data, we described variable phenotypes of epilepsy, intellectual disability (ID), and schizophrenia caused by 12p13.33–p13.32 terminal microdeletion in a Korean family. We hypothesized that CACNA1C and KDM5A genes of the six candidate genes located in this region were the best candidates for explaining epilepsy, ID, and schizophrenia and may be responsible for clinical features reported in cases with monosomy of the 12p13.33 subtelomeric region. On the background of microdeletion syndrome, which was described in clinical cases with mild, moderate, and severe neurodevelopmental manifestations as well as impairments, the clinician may determine whether the patient will end up with a more severe or milder end‐phenotype, which in turn determines disease prognosis. In our case, the 12p13.33–p13.32 terminal microdeletion may explain the variable expressivity in the same family. However, further comprehensive studies with larger cohorts focusing on careful phenotyping across the lifespan are required to clearly elucidate the possible contribution of genetic modifiers and the environmental influence on the expressivity of 12p13.33 microdeletion and associated characteristics.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
Floranne Boulogne ◽  
Laura Claus ◽  
Henry Wiersma ◽  
Roy Oelen ◽  
Floor Schukking ◽  
...  

Abstract Background and Aims Genetic testing in patients with suspected hereditary kidney disease does not always reveal the genetic cause for the patient's disorder. Potentially pathogenic variants can reside in genes that are not known to be involved in kidney disease, which makes it difficult to prioritize and interpret the relevance of these variants. As such, there is a clear need for methods that predict the phenotypic consequences of gene expression in a way that is as unbiased as possible. To help identify candidate genes we have developed KidneyNetwork, in which tissue-specific expression is utilized to predict kidney-specific gene functions. Method We combined gene co-expression in 878 publicly available kidney RNA-sequencing samples with the co-expression of a multi-tissue RNA-sequencing dataset of 31,499 samples to build KidneyNetwork. The expression patterns were used to predict which genes have a kidney-related function, and which (disease) phenotypes might be caused when these genes are mutated. By integrating the information from the HPO database, in which known phenotypic consequences of disease genes are annotated, with the gene co-expression network we obtained prediction scores for each gene per HPO term. As proof of principle, we applied KidneyNetwork to prioritize variants in exome-sequencing data from 13 kidney disease patients without a genetic diagnosis. Results We assessed the prediction performance of KidneyNetwork by comparing it to GeneNetwork, a multi-tissue co-expression network we previously developed. In KidneyNetwork, we observe a significantly improved prediction accuracy of kidney-related HPO-terms, as well as an increase in the total number of significantly predicted kidney-related HPO-terms (figure 1). To examine its clinical utility, we applied KidneyNetwork to 13 patients with a suspected hereditary kidney disease without a genetic diagnosis. Based on the HPO terms “Renal cyst” and “Hepatic cysts”, combined with a list of potentially damaging variants in one of the undiagnosed patients with mild ADPKD/PCLD, we identified ALG6 as a new candidate gene. ALG6 bears a high resemblance to other genes implicated in this phenotype in recent years. Through the 100,000 Genomes Project and collaborators we identified three additional patients with kidney and/or liver cysts carrying a suspected deleterious variant in ALG6. Conclusion We present KidneyNetwork, a kidney specific co-expression network that accurately predicts what genes have kidney-specific functions and may result in kidney disease. Gene-phenotype associations of genes unknown for kidney-related phenotypes can be predicted by KidneyNetwork. We show the added value of KidneyNetwork by applying it to exome sequencing data of kidney disease patients without a molecular diagnosis and consequently we propose ALG6 as a promising candidate gene. KidneyNetwork can be applied to clinically unsolved kidney disease cases, but it can also be used by researchers to gain insight into individual genes to better understand kidney physiology and pathophysiology. Acknowledgments This research was made possible through access to the data and findings generated by the 100,000 Genomes Project; http://www.genomicsengland.co.uk.


2017 ◽  
Vol 33 (15) ◽  
pp. 2402-2404 ◽  
Author(s):  
Alessandro Romanel ◽  
Tuo Zhang ◽  
Olivier Elemento ◽  
Francesca Demichelis

Sign in / Sign up

Export Citation Format

Share Document