scholarly journals Free Energy Landscape and Conformational Kinetics of Hoogsteen Base-Pairing in DNA vs RNA

2020 ◽  
Author(s):  
D. Ray ◽  
I. Andricioaei

ABSTRACTGenetic information is encoded in the DNA double helix which, in its physiological milieu, is characterized by the iconical Watson-Crick nucleobase pairing. Recent NMR relaxation experiments revealed the transient presence of an alternative, Hoogsteen base pairing pattern in naked DNA duplexes and estimated its relative stability and lifetime. In contrast, HG transitions in RNA were not observed. Understanding Hoogsteen (HG) base pairing is important because the underlying "breathing" can modulate significantly DNA/RNA recognition by proteins. However, a detailed mechanistic insight into the transition pathways and kinetics is still missing. We performed enhanced sampling simulation (with combined metadynamics and adaptive force bias method) and Markov State modeling to obtain accurate free energy, kinetics and the intermediates in the transition pathway between WC and HG base pair for both naked B-DNA and A-RNA duplexes. The Markov state model constructed from our unbiased MD simulation data revealed previously unknown complex extra-helical intermediates in this seemingly simple process of base pair conformation switching in B-DNA. Extending our calculation to A-RNA, for which HG base pair is not observed experimentally, resulted in relatively unstable single hydrogen bonded distorted Hoogsteen like base pair. Unlike B-DNA the transition pathway primarily involved base paired and intra-helical intermediates with transition timescales much higher than that of B-DNA. The seemingly obvious flip-over reaction coordinate, i.e., the glycosidic torsion angle is unable to resolve the intermediates; so a multidimensional picture, involving backbone dihedral angles and distance between atoms participating in hydrogen bonds, is required to gain insight into the molecular mechanism.SIGNIFICANCEFormation of unconventional Hoogsteen (HG) base pairing is an important problem in DNA biophysics owing to its key role in facilitating the binding of DNA repairing enzymes, proteins and drugs to damaged DNA. X-ray crystallography and NMR relaxation experiments revealed the presence of HG base pair in naked DNA duplex and protein-DNA complex but no HG base pair was observed in RNA. Molecular dynamics simulations could reproduce the experimental free energy cost of HG base pairing in DNA although a detailed mechanistic insight is still missing. We performed enhanced sampling simulation and Markov state modeling to obtain accurate free energy, kinetics and the intermediates in the transition pathway between WC and HG base pair for both B-DNA and A-RNA.

2020 ◽  
Author(s):  
Hunmin Jung ◽  
Seongmin Lee

Reactive oxygen species induced by ionizing radiation and metabolic pathways generate 7,8-dihydro-8-oxoguanine (oxoG) and 7,8-dihydro-8-oxoadenine (oxoA) as two major forms of oxidative damage. The mutagenicity of oxoG, which promotes G to T transversions, is attributed to the lesion’s conformational flexibility that enables Hoogsteen base pairing with dATP in the confines of DNA polymerases. The mutagenesis mechanism of oxoA, which preferentially causes A to C transversions, remains poorly characterized. While structures for oxoA bypass by human DNA polymerases are available, that of prokaryotic DNA polymerases have not been reported. Herein, we report kinetic and structural characterizations of Sulfolobus solfataricus Dpo4 incorporating a nucleotide opposite oxoA. Our kinetic studies show oxoA at the templating position reduces the replication fidelity by ~560-fold. The catalytic efficiency of the oxoA:dGTP insertion is ~300-fold greater than that of the dA:dGTP insertion, highlighting the promutagenic nature of oxoA. The relative efficiency of the oxoA:dGTP misincorporation is ~5-fold greater than that of the oxoG:dATP misincorporation, suggesting the mutagenicity of oxoA is comparable to that of oxoG. In the Dpo4 replicating base pair site, oxoA in the anti-conformation forms a Watson-Crick base pair with an incoming dTTP, while oxoA in the syn-conformation assumes Hoogsteen base pairing with an incoming dGTP, displaying the dual coding potential of the lesion. Within the Dpo4 active site, the oxoA:dGTP base pair adopts a Watson-Crick-like geometry, indicating Dpo4 influences the oxoA:dGTP base pair conformation. Overall, the results reported here provide insights into the miscoding properties of the major oxidative adenine lesion during translesion synthesis.


2012 ◽  
Vol 40 (2) ◽  
pp. 419-423 ◽  
Author(s):  
Mikael Akke

Protein conformational dynamics can be critical for ligand binding in two ways that relate to kinetics and thermodynamics respectively. First, conformational transitions between different substates can control access to the binding site (kinetics). Secondly, differences between free and ligand-bound states in their conformational fluctuations contribute to the entropy of ligand binding (thermodynamics). In the present paper, I focus on the second topic, summarizing our recent results on the role of conformational entropy in ligand binding to Gal3C (the carbohydrate-recognition domain of galectin-3). NMR relaxation experiments provide a unique probe of conformational entropy by characterizing bond-vector fluctuations at atomic resolution. By monitoring differences between the free and ligand-bound states in their backbone and side chain order parameters, we have estimated the contributions from conformational entropy to the free energy of binding. Overall, the conformational entropy of Gal3C increases upon ligand binding, thereby contributing favourably to the binding affinity. Comparisons with the results from isothermal titration calorimetry indicate that the conformational entropy is comparable in magnitude to the enthalpy of binding. Furthermore, there are significant differences in the dynamic response to binding of different ligands, despite the fact that the protein structure is virtually identical in the different protein–ligand complexes. Thus both affinity and specificity of ligand binding to Gal3C appear to depend in part on subtle differences in the conformational fluctuations that reflect the complex interplay between structure, dynamics and ligand interactions.


Sign in / Sign up

Export Citation Format

Share Document