scholarly journals Modular lipid nanoparticle platform technology for siRNA and lipophilic prodrug delivery

2020 ◽  
Author(s):  
Roy van der Meel ◽  
Sam Chen ◽  
Josh Zaifman ◽  
Jayesh A. Kulkarni ◽  
Xu Ran S. Zhang ◽  
...  

ABSTRACTSuccessfully employing therapeutic nucleic acids, such as small interfering RNA (siRNA), requires chemical modifications or the use of nanocarrier technology to prevent their degradation in the circulation and to facilitate intracellular delivery. Lipid nanoparticles (LNP) are among the most advanced nanocarriers culminating in the first siRNA therapeutic’s clinical translation and approval. At the same time, their applicability as modular platform technology due to the interchangeable building blocks and siRNA payload hallmarks one of LNPs’ major advantages. In addition, drug derivatization approaches to synthesize lipophilic small molecule prodrugs enable stable incorporation in LNPs. This provides ample opportunities to develop combination therapies by co-encapsulating multiple therapeutic agents in a single formulation. Here, we describe how the modular LNP platform can be applied for combined gene silencing and chemotherapy to induce additive anti-cancer effects. We show that various lipophilic taxane prodrug derivatives and siRNA against the androgen receptor, a prostate cancer driver, can be efficiently and stably co-encapsulated in LNPs. In addition, we demonstrate that prodrug incorporation does not affect LNPs’ gene silencing ability and that the combination therapy induces additive therapeutic effects in vitro. Using a double-radiolabeling approach, we quantitively determined the LNPs’ and prodrugs’ pharmacokinetic properties and biodistribution following systemic administration in tumor-bearing mice. Our results indicate that co-encapsulation of siRNA and lipophilic prodrugs into LNPs is an attractive and straightforward approach for combination therapy development.GRAPHICAL ABSTRACT

2020 ◽  
Vol 6 (30) ◽  
pp. eaba5379 ◽  
Author(s):  
Md. Nazir Hossen ◽  
Lin Wang ◽  
Harisha R. Chinthalapally ◽  
Joe D. Robertson ◽  
Kar-Ming Fung ◽  
...  

Gene silencing using small-interfering RNA (siRNA) is a viable therapeutic approach; however, the lack of effective delivery systems limits its clinical translation. Herein, we doped conventional siRNA-liposomal formulations with gold nanoparticles to create “auroliposomes,” which significantly enhanced gene silencing. We targeted MICU1, a novel glycolytic switch in ovarian cancer, and delivered MICU1-siRNA using three delivery systems—commercial transfection agents, conventional liposomes, and auroliposomes. Low-dose siRNA via transfection or conventional liposomes was ineffective for MICU1 silencing; however, in auroliposomes, the same dose gave >85% gene silencing. Efficacy was evident from both in vitro growth assays of ovarian cancer cells and in vivo tumor growth in human ovarian cell line—and patient-derived xenograft models. Incorporation of gold nanoparticles shifted intracellular uptake pathways such that liposomes avoided degradation within lysosomes. Auroliposomes were nontoxic to vital organs. Therefore, auroliposomes represent a novel siRNA delivery system with superior efficacy for multiple therapeutic applications.


2012 ◽  
Vol 51 (34) ◽  
pp. 8478-8484 ◽  
Author(s):  
Tianzhu Yu ◽  
Xiaoxuan Liu ◽  
Anne-Laure Bolcato-Bellemin ◽  
Yang Wang ◽  
Cheng Liu ◽  
...  

2019 ◽  
Vol 69 (1) ◽  
pp. 49-61 ◽  
Author(s):  
Londiwe Simphiwe Mbatha ◽  
Fiona Chepkoech Maiyo ◽  
Moganavelli Singh

Abstract Use of exogenous small interfering RNA (siRNA) has shown potential in gene silencing. The need for target-specific siRNA delivery vehicles is crucial to successful gene silencing. This study is aimed at developing and evaluating the safety and efficiency of siRNA delivery using unmodified and folic acid (FA) modified poly(amidoamine) generation 5 (PAMAM G5D) functionalized gold nanoparticles (Au:G5D/Au:G5D:FA) in vitro. All formulations were physico--chemically characterized and nanocomplexes were evaluated using the band shift, dye displacement, nuclease protection, MTT cell viability, and luciferase reporter gene assays. Nanocomplexes bound and protected siRNA against degrading RNases, and were well tolerated by the cells. The Au:G5D:FA nanocomplexes elicited excellent gene silencing in folate receptor expressing HeLa-Tat-Luc cells, decreasing significantly in the presence of excess FA ligand, indicating nanocomplex uptake by the mechanism of receptor mediation. These results highlight the synergistic role played by Au and the dendrimer in enhancement of transgene silencing.


2012 ◽  
Vol 124 (34) ◽  
pp. 8606-8612 ◽  
Author(s):  
Tianzhu Yu ◽  
Xiaoxuan Liu ◽  
Anne-Laure Bolcato-Bellemin ◽  
Yang Wang ◽  
Cheng Liu ◽  
...  

2010 ◽  
Vol 52 (8) ◽  
pp. 693-699 ◽  
Author(s):  
Taro Adachi ◽  
Emi Kawakami ◽  
Naozumi Ishimaru ◽  
Takahiro Ochiya ◽  
Yoshio Hayashi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document