scholarly journals A faster and more accurate algorithm for calculating population genetics statistics requiring sums of Stirling numbers of the first kind

2020 ◽  
Author(s):  
Swaine L. Chen ◽  
Nico M. Temme

AbstractStirling numbers of the first kind are used in the derivation of several population genetics statistics, which in turn are useful for testing evolutionary hypotheses directly from DNA sequences. Here, we explore the cumulative distribution function of these Stirling numbers, which enables a single direct estimate of the sum, using representations in terms of the incomplete beta function. This estimator enables an improved method for calculating an asymptotic estimate for one useful statistic, Fu’s Fs. By reducing the calculation from a sum of terms involving Stirling numbers to a single estimate, we simultaneously improve accuracy and dramatically increase speed.

2020 ◽  
Vol 10 (11) ◽  
pp. 3959-3967
Author(s):  
Swaine L. Chen ◽  
Nico M. Temme

Ewen’s sampling formula is a foundational theoretical result that connects probability and number theory with molecular genetics and molecular evolution; it was the analytical result required for testing the neutral theory of evolution, and has since been directly or indirectly utilized in a number of population genetics statistics. Ewen’s sampling formula, in turn, is deeply connected to Stirling numbers of the first kind. Here, we explore the cumulative distribution function of these Stirling numbers, which enables a single direct estimate of the sum, using representations in terms of the incomplete beta function. This estimator enables an improved method for calculating an asymptotic estimate for one useful statistic, Fu’s Fs. By reducing the calculation from a sum of terms involving Stirling numbers to a single estimate, we simultaneously improve accuracy and dramatically increase speed.


Author(s):  
RONALD R. YAGER

We look at the issue of obtaining a variance like measure associated with probability distributions over ordinal sets. We call these dissonance measures. We specify some general properties desired in these dissonance measures. The centrality of the cumulative distribution function in formulating the concept of dissonance is pointed out. We introduce some specific examples of measures of dissonance.


2017 ◽  
Vol 20 (5) ◽  
pp. 939-951
Author(s):  
Amal Almarwani ◽  
Bashair Aljohani ◽  
Rasha Almutairi ◽  
Nada Albalawi ◽  
Alya O. Al Mutairi

Sign in / Sign up

Export Citation Format

Share Document