scholarly journals Design and power analysis for multi-sample single cell genomics experiments

Author(s):  
Katharina T. Schmid ◽  
Cristiana Cruceanu ◽  
Anika Böttcher ◽  
Heiko Lickert ◽  
Elisabeth B. Binder ◽  
...  

AbstractBackgroundThe identification of genes associated with specific experimental conditions, genotypes or phenotypes through differential expression analysis has long been the cornerstone of transcriptomic analysis. Single cell RNA-seq is revolutionizing transcriptomics and is enabling interindividual differential gene expression analysis and identification of genetic variants associated with gene expression, so called expression quantitative trait loci at cell-type resolution. Current methods for power analysis and guidance of experimental design either do not account for the specific characteristics of single cell data or are not suitable to model interindividual comparisons.ResultsHere we present a statistical framework for experimental design and power analysis of single cell differential gene expression between groups of individuals and expression quantitative trait locus analysis. The model relates sample size, number of cells per individual and sequencing depth to the power of detecting differentially expressed genes within individual cell types. Power analysis is based on data driven priors from literature or pilot experiments across a wide range of application scenarios and single cell RNA-seq platforms. Using these priors we show that, for a fixed budget, the number of cells per individual is the major determinant of power.ConclusionOur model is general and allows for systematic comparison of alternative experimental designs and can thus be used to guide experimental design to optimize power. For a wide range of applications, shallow sequencing of high numbers of cells per individual leads to higher overall power than deep sequencing of fewer cells. The model is implemented as an R package scPower.

2019 ◽  
Author(s):  
Alemu Takele Assefa ◽  
Jo Vandesompele ◽  
Olivier Thas

SummarySPsimSeq is a semi-parametric simulation method for bulk and single cell RNA sequencing data. It simulates data from a good estimate of the actual distribution of a given real RNA-seq dataset. In contrast to existing approaches that assume a particular data distribution, our method constructs an empirical distribution of gene expression data from a given source RNA-seq experiment to faithfully capture the data characteristics of real data. Importantly, our method can be used to simulate a wide range of scenarios, such as single or multiple biological groups, systematic variations (e.g. confounding batch effects), and different sample sizes. It can also be used to simulate different gene expression units resulting from different library preparation protocols, such as read counts or UMI counts.Availability and implementationThe R package and associated documentation is available from https://github.com/CenterForStatistics-UGent/SPsimSeq.Supplementary informationSupplementary data are available at bioRχiv online.


Sign in / Sign up

Export Citation Format

Share Document