scholarly journals The nucleosome DNA entry-exit site is important for transcription termination in Saccharomyces cerevisiae

2020 ◽  
Author(s):  
A. Elizabeth Hildreth ◽  
Mitchell A. Ellison ◽  
Alex M. Francette ◽  
Julia M. Seraly ◽  
Lauren M. Lotka ◽  
...  

AbstractCompared to other stages in the RNA polymerase II transcription cycle, the role of chromatin in transcription termination is poorly understood. Through a genetic screen, we identified histone mutant strains that exhibit transcriptional readthrough of terminators in vivo. Amino acid subtitutions map to the nucleosome DNA entry-exit site. On a genome-wide scale, the strongest H3 mutants revealed increased sense-strand transcription upstream and downstream of Pol II transcribed genes, increased antisense transcription overlapping gene bodies, and reduced nucleosome occupancy particularly at the 3’ ends of genes. Replacement of the native sequence downstream of a gene with a sequence that increases nucleosome occupancy in vivo reduced readthrough transcription and suppressed the effect of a DNA entry-exit site substitution. Our results suggest that nucleosomes can facilitate termination by serving as a barrier to RNA polymerase II progression and highlight the importance of the DNA entry-exit site in maintaining the integrity of the transcriptome.

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
A Elizabeth Hildreth ◽  
Mitchell A Ellison ◽  
Alex M Francette ◽  
Julia M Seraly ◽  
Lauren M Lotka ◽  
...  

Compared to other stages in the RNA polymerase II transcription cycle, the role of chromatin in transcription termination is poorly understood. We performed a genetic screen in Saccharomyces cerevisiae to identify histone mutants that exhibit transcriptional readthrough of terminators. Amino acid substitutions identified by the screen map to the nucleosome DNA entry-exit site. The strongest H3 mutants revealed widespread genomic changes, including increased sense-strand transcription upstream and downstream of genes, increased antisense transcription overlapping gene bodies, and reduced nucleosome occupancy particularly at the 3’ ends of genes. Replacement of the native sequence downstream of a gene with a sequence that increases nucleosome occupancy in vivo reduced readthrough transcription and suppressed the effect of a DNA entry-exit site substitution. Our results suggest that nucleosomes can facilitate termination by serving as a barrier to transcription and highlight the importance of the DNA entry-exit site in broadly maintaining the integrity of the transcriptome.


2020 ◽  
Vol 48 (17) ◽  
pp. 9589-9605 ◽  
Author(s):  
Lei Yue ◽  
Jie Li ◽  
Bing Zhang ◽  
Lei Qi ◽  
Zhihua Li ◽  
...  

Abstract Transcription termination defines accurate transcript 3′-ends and ensures programmed transcriptomes, making it critical to life. However, transcription termination mechanisms remain largely unknown in Archaea. Here, we reported the physiological significance of the newly identified general transcription termination factor of Archaea, the ribonuclease aCPSF1, and elucidated its 3′-end cleavage triggered termination mechanism. The depletion of Mmp-aCPSF1 in Methanococcus maripaludis caused a genome-wide transcription termination defect and disordered transcriptome. Transcript-3′end-sequencing revealed that transcriptions primarily terminate downstream of a uridine-rich motif where Mmp-aCPSF1 performed an endoribonucleolytic cleavage, and the endoribonuclease activity was determined to be essential to the in vivo transcription termination. Co-immunoprecipitation and chromatin-immunoprecipitation detected interactions of Mmp-aCPSF1 with RNA polymerase and chromosome. Phylogenetic analysis revealed that the aCPSF1 orthologs are ubiquitously distributed among the archaeal phyla, and two aCPSF1 orthologs from Lokiarchaeota and Thaumarchaeota could replace Mmp-aCPSF1 to terminate transcription of M. maripaludis. Therefore, the aCPSF1 dependent termination mechanism could be widely employed in Archaea, including Lokiarchaeota belonging to Asgard Archaea, the postulated archaeal ancestor of Eukaryotes. Strikingly, aCPSF1-dependent archaeal transcription termination reported here exposes a similar 3′-cleavage mode as the eukaryotic RNA polymerase II termination, thus would shed lights on understanding the evolutionary linking between archaeal and eukaryotic termination machineries.


1988 ◽  
Vol 8 (10) ◽  
pp. 4389-4394
Author(s):  
T K Kerppola ◽  
C M Kane

We have studied transcription elongation and termination in the human c-myc gene. Transcription of c-myc gene sequences with purified mammalian RNA polymerase II revealed several sites of transcription termination and pausing in the vicinity of the exon 1-intron 1 junction. This region previously has been shown to block transcription elongation in vivo by nuclear run-on analysis (D. Bentley and M. Groudine, Nature [London] 321:702-706, 1986). These sites were recognized by purified RNA polymerase II, and we therefore designated them intrinsic sites of termination and pausing. Two of these sites cause termination of RNA polymerase III transcription as well. RNA polymerase II terminated transcription in a cluster of seven consecutive T residues in the nontranscribed strand and paused during transcription at three additional sites in this region. The intrinsic sites of transcription termination and pausing described here correspond closely to the 3' ends of transcripts synthesized in Xenopus oocytes injected with plasmids containing the c-myc termination region (D. Bentley and M. Groudine, Cell 53:245-256, 1988). This correspondence suggests that the intrinsic recognition of these termination and pause sites by purified RNA polymerase II may play a role in the transcription elongation block observed in vivo.


1993 ◽  
Vol 13 (9) ◽  
pp. 5159-5167
Author(s):  
L E Hyman ◽  
C L Moore

Little is known about the transcriptional events which occur downstream of polyadenylation sites. Although the polyadenylation site of a gene can be easily identified, it has been difficult to determine the site of transcription termination in vivo because of the rapid processing of pre-mRNAs. Using an in vitro approach, we have shown that sequences from the 3' ends of two different Saccharomyces cerevisiae genes, ADH2 and GAL7, direct transcription termination and/or polymerase pausing in yeast nuclear extracts. In the case of the ADH2 sequence, the RNA synthesized in vitro ends approximately 50 to 150 nucleotides downstream of the poly(A) site. This RNA is not polyadenylated and may represent the primary transcript. A similarly sized nonpolyadenylated [poly(A)-] transcript can be detected in vivo from the same transcriptional template. A GAL7 template also directs the in vitro synthesis of an RNA which extends a short distance past the poly(A) site. However, a significant amount of the GAL7 RNA is polyadenylated at or close to the in vivo poly(A) site. Mutations of GAL7 or ADH2 poly(A) signals prevent polyadenylation but do not affect the in vitro synthesis of the extended poly(A)- transcript. Since transcription of the mutant template continues through this region in vivo, it is likely that a strong RNA polymerase II pause site lies within the 3'-end sequences. Our data support the hypothesis that the coupling of this pause site to a functional polyadenylation signal results in transcription termination.


2019 ◽  
Author(s):  
Julieta Rivosecchi ◽  
Marc Larochelle ◽  
Camille Teste ◽  
Frédéric Grenier ◽  
Amélie Malapert ◽  
...  

ABSTRACTR-loop disassembly by the human helicase Senataxin contributes to genome stability and to proper transcription termination at a subset of RNA polymerase II genes. Whether Senataxin-mediated R-loop disassembly also contributes to transcription termination at other classes of genes has remained unclear. Here we show in fission yeast that SenataxinSen1promotes efficient termination of RNA Polymerase III (RNAP3) transcriptionin vivo. In the absence of SenataxinSen1, RNAP3 accumulates downstream of the primary terminator at RNAP3-transcribed genes and produces long exosome-sensitive 3’-extended transcripts. Importantly, neither of these defects was affected by the removal of R-loops. The finding that SenataxinSen1acts as an ancillary factor for RNAP3 transcription terminationin vivochallenges the pre-existing view that RNAP3 terminates transcription autonomously. We propose that Senataxin is a cofactor for transcription termination that has been co-opted by different RNA polymerases in the course of evolution.


1988 ◽  
Vol 8 (10) ◽  
pp. 4389-4394 ◽  
Author(s):  
T K Kerppola ◽  
C M Kane

We have studied transcription elongation and termination in the human c-myc gene. Transcription of c-myc gene sequences with purified mammalian RNA polymerase II revealed several sites of transcription termination and pausing in the vicinity of the exon 1-intron 1 junction. This region previously has been shown to block transcription elongation in vivo by nuclear run-on analysis (D. Bentley and M. Groudine, Nature [London] 321:702-706, 1986). These sites were recognized by purified RNA polymerase II, and we therefore designated them intrinsic sites of termination and pausing. Two of these sites cause termination of RNA polymerase III transcription as well. RNA polymerase II terminated transcription in a cluster of seven consecutive T residues in the nontranscribed strand and paused during transcription at three additional sites in this region. The intrinsic sites of transcription termination and pausing described here correspond closely to the 3' ends of transcripts synthesized in Xenopus oocytes injected with plasmids containing the c-myc termination region (D. Bentley and M. Groudine, Cell 53:245-256, 1988). This correspondence suggests that the intrinsic recognition of these termination and pause sites by purified RNA polymerase II may play a role in the transcription elongation block observed in vivo.


1993 ◽  
Vol 13 (9) ◽  
pp. 5159-5167 ◽  
Author(s):  
L E Hyman ◽  
C L Moore

Little is known about the transcriptional events which occur downstream of polyadenylation sites. Although the polyadenylation site of a gene can be easily identified, it has been difficult to determine the site of transcription termination in vivo because of the rapid processing of pre-mRNAs. Using an in vitro approach, we have shown that sequences from the 3' ends of two different Saccharomyces cerevisiae genes, ADH2 and GAL7, direct transcription termination and/or polymerase pausing in yeast nuclear extracts. In the case of the ADH2 sequence, the RNA synthesized in vitro ends approximately 50 to 150 nucleotides downstream of the poly(A) site. This RNA is not polyadenylated and may represent the primary transcript. A similarly sized nonpolyadenylated [poly(A)-] transcript can be detected in vivo from the same transcriptional template. A GAL7 template also directs the in vitro synthesis of an RNA which extends a short distance past the poly(A) site. However, a significant amount of the GAL7 RNA is polyadenylated at or close to the in vivo poly(A) site. Mutations of GAL7 or ADH2 poly(A) signals prevent polyadenylation but do not affect the in vitro synthesis of the extended poly(A)- transcript. Since transcription of the mutant template continues through this region in vivo, it is likely that a strong RNA polymerase II pause site lies within the 3'-end sequences. Our data support the hypothesis that the coupling of this pause site to a functional polyadenylation signal results in transcription termination.


Sign in / Sign up

Export Citation Format

Share Document