scholarly journals Extending A Chronological and Geographical Analysis of Personal Reports of COVID-19 on Twitter to England, UK

Author(s):  
S Golder ◽  
Ari Z. Klein ◽  
Arjun Magge ◽  
Karen O’Connor ◽  
Haitao Cai ◽  
...  

AbstractThe rapidly evolving COVID-19 pandemic presents challenges for actively monitoring its transmission. In this study, we extend a social media mining approach used in the US to automatically identify personal reports of COVID-19 on Twitter in England, UK. The findings indicate that natural language processing and machine learning framework could help provide an early indication of the chronological and geographical distribution of COVID-19 in England.

Author(s):  
Ari Z. Klein ◽  
Arjun Magge ◽  
Karen O’Connor ◽  
Haitao Cai ◽  
Davy Weissenbacher ◽  
...  

ABSTRACTThe rapidly evolving outbreak of COVID-19 presents challenges for actively monitoring its spread. In this study, we assessed a social media mining approach for automatically analyzing the chronological and geographical distribution of users in the United States reporting personal information related to COVID-19 on Twitter. The results suggest that our natural language processing and machine learning framework could help provide an early indication of the spread of COVID-19.


2015 ◽  
Vol 22 (3) ◽  
pp. 671-681 ◽  
Author(s):  
Azadeh Nikfarjam ◽  
Abeed Sarker ◽  
Karen O’Connor ◽  
Rachel Ginn ◽  
Graciela Gonzalez

Abstract Objective Social media is becoming increasingly popular as a platform for sharing personal health-related information. This information can be utilized for public health monitoring tasks, particularly for pharmacovigilance, via the use of natural language processing (NLP) techniques. However, the language in social media is highly informal, and user-expressed medical concepts are often nontechnical, descriptive, and challenging to extract. There has been limited progress in addressing these challenges, and thus far, advanced machine learning-based NLP techniques have been underutilized. Our objective is to design a machine learning-based approach to extract mentions of adverse drug reactions (ADRs) from highly informal text in social media. Methods We introduce ADRMine, a machine learning-based concept extraction system that uses conditional random fields (CRFs). ADRMine utilizes a variety of features, including a novel feature for modeling words’ semantic similarities. The similarities are modeled by clustering words based on unsupervised, pretrained word representation vectors (embeddings) generated from unlabeled user posts in social media using a deep learning technique. Results ADRMine outperforms several strong baseline systems in the ADR extraction task by achieving an F-measure of 0.82. Feature analysis demonstrates that the proposed word cluster features significantly improve extraction performance. Conclusion It is possible to extract complex medical concepts, with relatively high performance, from informal, user-generated content. Our approach is particularly scalable, suitable for social media mining, as it relies on large volumes of unlabeled data, thus diminishing the need for large, annotated training data sets.


2021 ◽  
Vol 28 (1) ◽  
pp. e100262
Author(s):  
Mustafa Khanbhai ◽  
Patrick Anyadi ◽  
Joshua Symons ◽  
Kelsey Flott ◽  
Ara Darzi ◽  
...  

ObjectivesUnstructured free-text patient feedback contains rich information, and analysing these data manually would require a lot of personnel resources which are not available in most healthcare organisations.To undertake a systematic review of the literature on the use of natural language processing (NLP) and machine learning (ML) to process and analyse free-text patient experience data.MethodsDatabases were systematically searched to identify articles published between January 2000 and December 2019 examining NLP to analyse free-text patient feedback. Due to the heterogeneous nature of the studies, a narrative synthesis was deemed most appropriate. Data related to the study purpose, corpus, methodology, performance metrics and indicators of quality were recorded.ResultsNineteen articles were included. The majority (80%) of studies applied language analysis techniques on patient feedback from social media sites (unsolicited) followed by structured surveys (solicited). Supervised learning was frequently used (n=9), followed by unsupervised (n=6) and semisupervised (n=3). Comments extracted from social media were analysed using an unsupervised approach, and free-text comments held within structured surveys were analysed using a supervised approach. Reported performance metrics included the precision, recall and F-measure, with support vector machine and Naïve Bayes being the best performing ML classifiers.ConclusionNLP and ML have emerged as an important tool for processing unstructured free text. Both supervised and unsupervised approaches have their role depending on the data source. With the advancement of data analysis tools, these techniques may be useful to healthcare organisations to generate insight from the volumes of unstructured free-text data.


2021 ◽  
Author(s):  
Abul Hasan ◽  
Mark Levene ◽  
David Weston ◽  
Renate Fromson ◽  
Nicolas Koslover ◽  
...  

BACKGROUND The COVID-19 pandemic has created a pressing need for integrating information from disparate sources, in order to assist decision makers. Social media is important in this respect, however, to make sense of the textual information it provides and be able to automate the processing of large amounts of data, natural language processing methods are needed. Social media posts are often noisy, yet they may provide valuable insights regarding the severity and prevalence of the disease in the population. In particular, machine learning techniques for triage and diagnosis could allow for a better understanding of what social media may offer in this respect. OBJECTIVE This study aims to develop an end-to-end natural language processing pipeline for triage and diagnosis of COVID-19 from patient-authored social media posts, in order to provide researchers and other interested parties with additional information on the symptoms, severity and prevalence of the disease. METHODS The text processing pipeline first extracts COVID-19 symptoms and related concepts such as severity, duration, negations, and body parts from patients’ posts using conditional random fields. An unsupervised rule-based algorithm is then applied to establish relations between concepts in the next step of the pipeline. The extracted concepts and relations are subsequently used to construct two different vector representations of each post. These vectors are applied separately to build support vector machine learning models to triage patients into three categories and diagnose them for COVID-19. RESULTS We report that Macro- and Micro-averaged F_{1\ }scores in the range of 71-96% and 61-87%, respectively, for the triage and diagnosis of COVID-19, when the models are trained on human labelled data. Our experimental results indicate that similar performance can be achieved when the models are trained using predicted labels from concept extraction and rule-based classifiers, thus yielding end-to-end machine learning. Also, we highlight important features uncovered by our diagnostic machine learning models and compare them with the most frequent symptoms revealed in another COVID-19 dataset. In particular, we found that the most important features are not always the most frequent ones. CONCLUSIONS Our preliminary results show that it is possible to automatically triage and diagnose patients for COVID-19 from natural language narratives using a machine learning pipeline, in order to provide additional information on the severity and prevalence of the disease through the eyes of social media.


2019 ◽  
Vol 38 ◽  
pp. 100958 ◽  
Author(s):  
Arjan S. Gosal ◽  
Ilse R. Geijzendorffer ◽  
Tomáš Václavík ◽  
Brigitte Poulin ◽  
Guy Ziv

Author(s):  
Mitta Roja

Abstract: Cyberbullying is a major problem encountered on internet that affects teenagers and also adults. It has lead to mishappenings like suicide and depression. Regulation of content on Social media platorms has become a growing need. The following study uses data from two different forms of cyberbullying, hate speech tweets from Twittter and comments based on personal attacks from Wikipedia forums to build a model based on detection of Cyberbullying in text data using Natural Language Processing and Machine learning. Threemethods for Feature extraction and four classifiers are studied to outline the best approach. For Tweet data the model provides accuracies above 90% and for Wikipedia data it givesaccuracies above 80%. Keywords: Cyberbullying, Hate speech, Personal attacks,Machine learning, Feature extraction, Twitter, Wikipedia


Sign in / Sign up

Export Citation Format

Share Document