scholarly journals Dopamine neurons of the VTA encode active conspecific interaction and promote social learning through social reward prediction error

2020 ◽  
Author(s):  
Clément Prévost-Solié ◽  
Benoit Girard ◽  
Beatrice Righetti ◽  
Malika Tapparel ◽  
Camilla Bellone

AbstractSocial interactions motivate behavior in many species, facilitating learning, foraging and cooperative behavior. However, how the brain encodes the reinforcing properties of social interactions remains elusive. Here using in vivo recording in freely moving mice, we show that Dopamine (DA) neurons of the Ventral Tegmental Area (VTA) increase their activity during active interactions with unfamiliar conspecific. Using a social instrumental task, we then show that VTA DA neuron activity signals social reward prediction error and drives social reinforcement learning. Thereby, our findings propose that VTA DA neurons are a neural substrate for a social learning signal driving motivated behavior.One Sentence SummaryDA neurons are a substrate for social reward learning through the Social Reward Prediction Error.

2020 ◽  
Author(s):  
Pramod Kaushik ◽  
Jérémie Naudé ◽  
Surampudi Bapi Raju ◽  
Frédéric Alexandre

AbstractClassical Conditioning is a fundamental learning mechanism where the Ventral Striatum is generally thought to be the source of inhibition to Ventral Tegmental Area (VTA) Dopamine neurons when a reward is expected. However, recent evidences point to a new candidate in VTA GABA encoding expectation for computing the reward prediction error in the VTA. In this system-level computational model, the VTA GABA signal is hypothesised to be a combination of magnitude and timing computed in the Peduncolopontine and Ventral Striatum respectively. This dissociation enables the model to explain recent results wherein Ventral Striatum lesions affected the temporal expectation of the reward but the magnitude of the reward was intact. This model also exhibits other features in classical conditioning namely, progressively decreasing firing for early rewards closer to the actual reward, twin peaks of VTA dopamine during training and cancellation of US dopamine after training.


2018 ◽  
Author(s):  
Kremer Yves ◽  
Flakowski Jérôme ◽  
Rohner Clément ◽  
Lüscher Christian

AbstractDopamine (DA) neurons of the ventral tegmental area (VTA) track external cues and rewards to generate a reward prediction error (RPE) signal during Pavlovian conditioning. Here we explored how RPE is implemented for a self-paced, operant task in freely moving mice. The animal could trigger a reward-predicting cue by remaining in a specific location of an operant box for a brief time before moving to a spout for reward collection. In vivo single-unit recordings revealed phasic responses to the cue and reward in correct trials, while with failures the activity paused, reflecting positive and negative error signals of a reward prediction. In addition, a majority of VTA DA neurons also encoded parameters of the goal-directed action (e.g. movement velocity, acceleration, distance to goal and licking) by changes in tonic firing rate. Such multiplexing of individual neurons was only apparent while the mouse was engaged in the task. We conclude that a multiplexed internal representation during the task modulates VTA DA neuron activity, indicating a multimodal prediction error that shapes behavioral adaptation of a self-paced goal-directed action.


2018 ◽  
Author(s):  
Rachel S. Lee ◽  
Marcelo G. Mattar ◽  
Nathan F. Parker ◽  
Ilana B. Witten ◽  
Nathaniel D. Daw

AbstractAlthough midbrain dopamine (DA) neurons have been thought to primarily encode reward prediction error (RPE), recent studies have also found movement-related DAergic signals. For example, we recently reported that DA neurons in mice projecting to dorsomedial striatum are modulated by choices contralateral to the recording side. Here, we introduce, and ultimately reject, a candidate resolution for the puzzling RPE vs movement dichotomy, by showing how seemingly movement-related activity might be explained by an action-specific RPE. By considering both choice and RPE on a trial-by-trial basis, we find that DA signals are modulated by contralateral choice in a manner that is distinct from RPE, implying that choice encoding is better explained by movement direction. This fundamental separation between RPE and movement encoding may help shed light on the diversity of functions and dysfunctions of the DA system.


2016 ◽  
Vol 18 (1) ◽  
pp. 23-32 ◽  

Reward prediction errors consist of the differences between received and predicted rewards. They are crucial for basic forms of learning about rewards and make us strive for more rewards—an evolutionary beneficial trait. Most dopamine neurons in the midbrain of humans, monkeys, and rodents signal a reward prediction error; they are activated by more reward than predicted (positive prediction error), remain at baseline activity for fully predicted rewards, and show depressed activity with less reward than predicted (negative prediction error). The dopamine signal increases nonlinearly with reward value and codes formal economic utility. Drugs of addiction generate, hijack, and amplify the dopamine reward signal and induce exaggerated, uncontrolled dopamine effects on neuronal plasticity. The striatum, amygdala, and frontal cortex also show reward prediction error coding, but only in subpopulations of neurons. Thus, the important concept of reward prediction errors is implemented in neuronal hardware.


2007 ◽  
Vol 97 (4) ◽  
pp. 3036-3045 ◽  
Author(s):  
Signe Bray ◽  
John O'Doherty

Attractive faces can be considered to be a form of visual reward. Previous imaging studies have reported activity in reward structures including orbitofrontal cortex and nucleus accumbens during presentation of attractive faces. Given that these stimuli appear to act as rewards, we set out to explore whether it was possible to establish conditioning in human subjects by pairing presentation of arbitrary affectively neutral stimuli with subsequent presentation of attractive and unattractive faces. Furthermore, we scanned human subjects with functional magnetic resonance imaging (fMRI) while they underwent this conditioning procedure to determine whether a reward-prediction error signal is engaged during learning with attractive faces as is known to be the case for learning with other types of reward such as juice and money. Subjects showed changes in behavioral ratings to the conditioned stimuli (CS) when comparing post- to preconditioning evaluations, notably for those CSs paired with attractive female faces. We used a simple Rescorla-Wagner learning model to generate a reward-prediction error signal and entered this into a regression analysis with the fMRI data. We found significant prediction error-related activity in the ventral striatum during conditioning with attractive compared with unattractive faces. These findings suggest that an arbitrary stimulus can acquire conditioned value by being paired with pleasant visual stimuli just as with other types of reward such as money or juice. This learning process elicits a reward-prediction error signal in a main target structure of dopamine neurons: the ventral striatum. The findings we describe here may provide insights into the neural mechanisms tapped into by advertisers seeking to influence behavioral preferences by repeatedly exposing consumers to simple associations between products and rewarding visual stimuli such as pretty faces.


2019 ◽  
Author(s):  
Rachel S Lee ◽  
Marcelo G Mattar ◽  
Nathan F Parker ◽  
Ilana B Witten ◽  
Nathaniel D Daw

2017 ◽  
Vol 114 (52) ◽  
pp. E11303-E11312 ◽  
Author(s):  
Scott A. Schelp ◽  
Katherine J. Pultorak ◽  
Dylan R. Rakowski ◽  
Devan M. Gomez ◽  
Gregory Krzystyniak ◽  
...  

The mesolimbic dopamine system is strongly implicated in motivational processes. Currently accepted theories suggest that transient mesolimbic dopamine release events energize reward seeking and encode reward value. During the pursuit of reward, critical associations are formed between the reward and cues that predict its availability. Conditioned by these experiences, dopamine neurons begin to fire upon the earliest presentation of a cue, and again at the receipt of reward. The resulting dopamine concentration scales proportionally to the value of the reward. In this study, we used a behavioral economics approach to quantify how transient dopamine release events scale with price and causally alter price sensitivity. We presented sucrose to rats across a range of prices and modeled the resulting demand curves to estimate price sensitivity. Using fast-scan cyclic voltammetry, we determined that the concentration of accumbal dopamine time-locked to cue presentation decreased with price. These data confirm and extend the notion that dopamine release events originating in the ventral tegmental area encode subjective value. Using optogenetics to augment dopamine concentration, we found that enhancing dopamine release at cue made demand more sensitive to price and decreased dopamine concentration at reward delivery. From these observations, we infer that value is decreased because of a negative reward prediction error (i.e., the animal receives less than expected). Conversely, enhancing dopamine at reward made demand less sensitive to price. We attribute this finding to a positive reward prediction error, whereby the animal perceives they received a better value than anticipated.


Sign in / Sign up

Export Citation Format

Share Document