internal representation
Recently Published Documents


TOTAL DOCUMENTS

514
(FIVE YEARS 141)

H-INDEX

46
(FIVE YEARS 4)

Author(s):  
Volodymyr Kombarov ◽  
Yevgen Tsegelnyk ◽  
Sergiy Plankovskyy ◽  
Yevhen Aksonov ◽  
Yevhen Kryzhyvets

Improving the accuracy, reliability, and performance of cyber-physical systems such as high-speed machining, laser cutting, welding and cladding etc. is one of the most pressing challenges in modern industry. CNC system carries out data processing and significantly affect on accuracy of operation such equipment. The paper considers the problem of controlled axes motion differential characteristics data processing in the internal representation of the discrete space of the CNC system. Equations for determining the required discreteness of the differential characteristics position and resolution, such as the speed, acceleration, and jerk are proposed. For the most widely used CNC equipment specific discreteness and resolution values have been determined.


2021 ◽  
Vol 12 ◽  
Author(s):  
Rebecca Gordon ◽  
James H. Smith-Spark ◽  
Elizabeth J. Newton ◽  
Lucy A. Henry

The importance of working memory (WM) in reading and mathematics performance has been widely studied, with recent research examining the components of WM (i.e., storage and processing) and their roles in these educational outcomes. However, the differing relationships between these abilities and the foundational skills involved in the development of reading and mathematics have received less attention. Additionally, the separation of verbal, visual and spatial storage and processing and subsequent links with foundational skills and downstream reading and mathematics has not been widely examined. The current study investigated the separate contributions of processing and storage from verbal, visual and spatial tasks to reading and mathematics, whilst considering influences on the underlying skills of verbal comprehension and counting, respectively. Ninety-two children aged 7- to 8-years were assessed. It was found that verbal comprehension (with some caveats) was predicted by verbal storage and reading was predicted by verbal and spatial storage. Counting was predicted by visual processing and storage, whilst mathematics was related to verbal and spatial storage. We argue that resources for tasks relying on external representations of stimuli related mainly to storage, and were largely verbal and spatial in nature. When a task required internal representation, there was a draw on visual processing and storage abilities. Findings suggest a possible meaningful separability of types of processing. Further investigation of this could lead to the development of an enhanced WM model, which might better inform interventions and reasonable adjustments for children who struggle with reading and mathematics due to WM deficits.


2021 ◽  
Vol 15 ◽  
Author(s):  
Sergio Delle Monache ◽  
Iole Indovina ◽  
Myrka Zago ◽  
Elena Daprati ◽  
Francesco Lacquaniti ◽  
...  

Gravity is a physical constraint all terrestrial species have adapted to through evolution. Indeed, gravity effects are taken into account in many forms of interaction with the environment, from the seemingly simple task of maintaining balance to the complex motor skills performed by athletes and dancers. Graviceptors, primarily located in the vestibular otolith organs, feed the Central Nervous System with information related to the gravity acceleration vector. This information is integrated with signals from semicircular canals, vision, and proprioception in an ensemble of interconnected brain areas, including the vestibular nuclei, cerebellum, thalamus, insula, retroinsula, parietal operculum, and temporo-parietal junction, in the so-called vestibular network. Classical views consider this stage of multisensory integration as instrumental to sort out conflicting and/or ambiguous information from the incoming sensory signals. However, there is compelling evidence that it also contributes to an internal representation of gravity effects based on prior experience with the environment. This a priori knowledge could be engaged by various types of information, including sensory signals like the visual ones, which lack a direct correspondence with physical gravity. Indeed, the retinal accelerations elicited by gravitational motion in a visual scene are not invariant, but scale with viewing distance. Moreover, the “visual” gravity vector may not be aligned with physical gravity, as when we watch a scene on a tilted monitor or in weightlessness. This review will discuss experimental evidence from behavioral, neuroimaging (connectomics, fMRI, TMS), and patients’ studies, supporting the idea that the internal model estimating the effects of gravity on visual objects is constructed by transforming the vestibular estimates of physical gravity, which are computed in the brainstem and cerebellum, into internalized estimates of virtual gravity, stored in the vestibular cortex. The integration of the internal model of gravity with visual and non-visual signals would take place at multiple levels in the cortex and might involve recurrent connections between early visual areas engaged in the analysis of spatio-temporal features of the visual stimuli and higher visual areas in temporo-parietal-insular regions.


2021 ◽  
Author(s):  
Christopher Soelistyo ◽  
Giulia Vallardi ◽  
Guillaume Charras ◽  
Alan R Lowe

Deep learning is now a powerful tool in microscopy data analysis, and is routinely used for image processing applications such as segmentation and denoising. However, it has rarely been used to directly learn mechanistic models of a biological system, owing to the complexity of the internal representations. Here, we develop an end-to-end machine learning model capable of learning the rules of a complex biological phenomenon, cell competition, directly from a large corpus of timelapse microscopy data. Cell competition is a quality control mechanism that eliminates unfit cells from a tissue and during which cell fate is thought to be determined by the local cellular neighborhood over time. To investigate this, we developed a new approach (τ-VAE) by coupling a variational autoencoder to a temporal convolution network to predict the fate of each cell in an epithelium. Using the τ-VAE's latent representation of the local tissue organization and the flow of information in the network, we decode the physical parameters responsible for correct prediction of fate in cell competition. Remarkably, the model autonomously learns that cell density is the single most important factor in predicting cell fate -- a conclusion that has taken over a decade of traditional experimental research to reach. Finally, to test the learned internal representation, we challenge the network with experiments performed in the presence of drugs that block signalling pathways involved in competition. We present a novel discriminator network that, using the predictions of the τ-VAE, can identify conditions which deviate from the normal behaviour, paving the way for automated, mechanism-aware drug screening.


2021 ◽  
Vol 118 (48) ◽  
pp. e2104878118
Author(s):  
Sam Gelman ◽  
Sarah A. Fahlberg ◽  
Pete Heinzelman ◽  
Philip A. Romero ◽  
Anthony Gitter

The mapping from protein sequence to function is highly complex, making it challenging to predict how sequence changes will affect a protein’s behavior and properties. We present a supervised deep learning framework to learn the sequence–function mapping from deep mutational scanning data and make predictions for new, uncharacterized sequence variants. We test multiple neural network architectures, including a graph convolutional network that incorporates protein structure, to explore how a network’s internal representation affects its ability to learn the sequence–function mapping. Our supervised learning approach displays superior performance over physics-based and unsupervised prediction methods. We find that networks that capture nonlinear interactions and share parameters across sequence positions are important for learning the relationship between sequence and function. Further analysis of the trained models reveals the networks’ ability to learn biologically meaningful information about protein structure and mechanism. Finally, we demonstrate the models’ ability to navigate sequence space and design new proteins beyond the training set. We applied the protein G B1 domain (GB1) models to design a sequence that binds to immunoglobulin G with substantially higher affinity than wild-type GB1.


2021 ◽  
Author(s):  
Leonid Joffe

Deep learning models for tabular data are restricted to a specific table format. Computer vision models, on the other hand, have a broader applicability; they work on all images and can learn universal features. This allows them to be trained on enormous corpora and have very wide transferability and applicability. Inspired by these properties, this work presents an architecture that aims to capture useful patterns across arbitrary tables. The model is trained on randomly sampled subsets of features from a table, processed by a convolutional network. This internal representation captures feature interactions that appear in the table. Experimental results show that the embeddings produced by this model are useful and transferable across many commonly used machine learning benchmarks datasets. Specifically, that using the embeddings produced by the network as additional features, improves the performance of a number of classifiers.


2021 ◽  
Author(s):  
Leonid Joffe

Deep learning models for tabular data are restricted to a specific table format. Computer vision models, on the other hand, have a broader applicability; they work on all images and can learn universal features. This allows them to be trained on enormous corpora and have very wide transferability and applicability. Inspired by these properties, this work presents an architecture that aims to capture useful patterns across arbitrary tables. The model is trained on randomly sampled subsets of features from a table, processed by a convolutional network. This internal representation captures feature interactions that appear in the table. Experimental results show that the embeddings produced by this model are useful and transferable across many commonly used machine learning benchmarks datasets. Specifically, that using the embeddings produced by the network as additional features, improves the performance of a number of classifiers.


2021 ◽  
Vol 10 (4) ◽  
pp. 1807-1823
Author(s):  
Henry Suryo ◽  
Y.L. Sukestiyarno ◽  
Mulyono Mulyono ◽  
Walid Walid

<p style="text-align: justify;">Spatial thinking has roles to facilitate learners to remember, understand, reason, and communicate objects and the connections among objects that are represented in space. This research aims to analyze the spatial thinking process of students in constructing new knowledge seen from the field-independent cognitive style learners based on Action-Process-Object-Schema (APOS) theory. APOS theory is used to explore spatial thinking processes which consist of mental structures of action, process, object, and schema. This research is qualitative research with an exploratory method. It provided the students' opportunity to solve problems alternately until the method found the most appropriate subjects for the research objectives. The subjects were 2 students of Mathematics Education in the fourth semester of Universitas Muria Kudus Indonesia. The data collection techniques were started by distributing the validated and reliable spatial thinking questions, the cognitive style question, and the interview. The applied data analysis consisted of data reduction, presentation, and conclusion. The findings showed (1) spatial thinking process of holistic-external representation typed learners were indicated by the representative thinking element, abstract-illustrative figure expression to communicate and complete the tasks correctly, (2) spatial thinking process of the holistic-internal representation typed learners were indicated by the representative means, having ideas, connecting with the previous knowledge in the forms of symbols and numbers, and finding the final results correctly although incomplete.</p>


2021 ◽  
Vol 17 (10) ◽  
pp. e1009465
Author(s):  
Ramzan Umarov ◽  
Yu Li ◽  
Erik Arner

Drug treatment induces cell type specific transcriptional programs, and as the number of combinations of drugs and cell types grows, the cost for exhaustive screens measuring the transcriptional drug response becomes intractable. We developed DeepCellState, a deep learning autoencoder-based framework, for predicting the induced transcriptional state in a cell type after drug treatment, based on the drug response in another cell type. Training the method on a large collection of transcriptional drug perturbation profiles, prediction accuracy improves significantly over baseline and alternative deep learning approaches when applying the method to two cell types, with improved accuracy when generalizing the framework to additional cell types. Treatments with drugs or whole drug families not seen during training are predicted with similar accuracy, and the same framework can be used for predicting the results from other interventions, such as gene knock-downs. Finally, analysis of the trained model shows that the internal representation is able to learn regulatory relationships between genes in a fully data-driven manner.


Author(s):  
Е.А. Попов

Разработаны алгоритмы обнаружения событий в гетерогенных гибридных системах. Представлена архитектура новой инструментальной среды ИСМА 2021. Приведено универсальное внутреннее представление гетерогенных гибридных систем. Рассмотрен пример расчёта классической гибридной системы в ИСМА 2021. Event detection algorithms for heterogeneous hybrid systems are designed. The architecture of the new modeling and simulation environment ISMA 2021 is presented. The universal internal representation of heterogeneous hybrid systems is given. A classic hybrid system is simulated in ISMA 2021.


Sign in / Sign up

Export Citation Format

Share Document