scholarly journals Unconventional ER to Endosomal Trafficking by a Retroviral Protein

2020 ◽  
Author(s):  
Wendy Kaichun Xu ◽  
Yongqiang Gou ◽  
Mary M. Lozano ◽  
Jaquelin P. Dudley

ABSTRACTMouse mammary tumor virus (MMTV) encodes a Rem precursor protein that specifies both regulatory and accessory functions. Rem is cleaved at the ER membrane into a functional N-terminal signal peptide (SP) and the C-terminus (Rem-CT). Rem-CT lacks a membrane-spanning domain and a known ER retention signal, yet was not detectably secreted into cell supernatants. Inhibition of intracellular trafficking by the drug Brefeldin A (BFA), which interferes with the ER to Golgi secretory pathway, resulted in dramatically reduced intracellular Rem-CT levels. A Rem mutant lacking glycosylation sites was cleaved into SP and Rem-CT, but was insensitive to BFA, suggesting that unglycosylated Rem-CT does not exit the ER or reach a degradative compartment. BFA reduction of Rem-CT levels was not rescued by proteasome or lysosomal inhibitors. Rem-CT has simple glycans, which are necessary for Rem-CT stability and trafficking, but indicate that Rem-CT does not traffic through the Golgi. Analysis of wild-type Rem-CT and its glycosylation mutant by confocal microscopy revealed that both were primarily localized to the ER lumen. A small fraction of wild-type Rem-CT, but not the unglycosylated mutant, were co-localized with Rab5+ endosomes. Expression of a dominant-negative (DN) form of ADP ribosylation factor 1 (Arf1) (T31N) mimicked the effects of BFA by reducing Rem-CT levels, suggesting that Arf1 prevents Rem-CT localization to a degradative compartment. A DN form of the AAA ATPase, p97/VCP, rescued Rem-CT in the presence of BFA or DN Arf1. Thus, Rem-CT uses an unconventional trafficking scheme, perhaps to thwart innate immunity to MMTV infection.IMPORTANCEMouse mammary tumor virus is a complex retrovirus that encodes a regulatory/accessory protein, Rem. Rem is a precursor protein that is processed at the endoplasmic reticulum (ER) membrane by signal peptidase. The N-terminal SP eludes ER-associated degradation to traffic to the nucleus and serve a human immunodeficiency virus Rev-like function. In contrast, the function of the C-terminal glycosylated cleavage product (Rem-CT) is unknown. Since localization is critical for protein function, we used multiple methods to localize Rem-CT. Surprisingly, Rem-CT, which lacks a transmembrane domain or an ER retention signal, was detected primarily within the ER and required glycosylation for trafficking to endosomes. Blocking of retrograde trafficking through Arf1 reduced Rem-CT levels, but was not restored by lysosomal or proteasomal inhibitors. The unique trafficking of Rem-CT suggests a novel intracellular trafficking pathway, potentially impacting host anti-viral immunity.

1999 ◽  
Vol 73 (12) ◽  
pp. 9810-9815 ◽  
Author(s):  
Zhaorong Jiang ◽  
Gregory M. Shackleford

ABSTRACT Mouse mammary tumor virus (MMTV) has frequently been used as an insertional mutagen to identify provirally activated mammary proto-oncogenes. To expedite and facilitate the process of cloning MMTV insertion sites, we have introduced a bacterial supFsuppressor tRNA gene into the long terminal repeat (LTR) of MMTV, thus allowing selection of clones containing it in lambda vectors bearing amber mutations. The presence of supF in the LTR should circumvent the screening process for proviral insertion sites, since only those lambda clones with supF-containing proviral-cellular junction fragments should be able to form plaques on a lawn of wild-type Escherichia coli (i.e., lackingsupF). The resulting virus (MMTVsupF) induced mammary tumors at the expected rate in infected mice, deleted the appropriate T-cell population by virtue of its superantigen gene, and stably retained the supF gene after passage via the milk to female offspring. To test the selective function of the system, size-selected DNA containing two proviral-cellular junction fragments from an MMTV supF-induced mammary tumor was ligated into λgtWES.λB, packaged, and plated on a supF-deficient bacterial host for selection of supF-containing clones. All plaques tested contained the desired cloned fragments, thus demonstrating the utility of this modified provirus for the rapid cloning of MMTV insertion sites.


Author(s):  
N. H. Sarkar ◽  
Dan H. Moore

Mouse mammary tumor virus (MTV) is believed to contain about 0.8% single stranded ribonucleic acid (RNA). This value of RNA content was estimated on a dry weight basis. The subject of this report is an attempt to visualize the RNA molecules of MTV particles.MTV particles were isolated from RIII mouse (tumor incidence approximately 80%) milk according to the method described by Lyons and Moore. Purified virions from 5 ml of milk were finally suspended in 0.2 ml of PBS, pH 7.4 and was mixed with an equal volume of pronase (5 mg/ml). This mixture was incubated at 37°C for an hour. RNA was extracted three times using freshly prepared cold phenol. It was then treated three times with cold ethyl ether to remove any trace of phenol. The RNA thus extracted was divided into two parts. One part was diluted four fold with 8M urea to avoid aggregation of the molecules. The other part was left untreated. Both samples were then mixed with an equal volume of 1M ammonium acetate, adjusted to pH 8.0 with NH3 containing chymotrypsin at a concentration of 0.01%.


Sign in / Sign up

Export Citation Format

Share Document