scholarly journals Computational Properties of the Visual Microcircuit

2020 ◽  
Author(s):  
Gerald Hahn ◽  
Arvind Kumar ◽  
Helmut Schmidt ◽  
Thomas R. Knösche ◽  
Gustavo Deco

AbstractThe neocortex is organized around layered microcircuits consisting of a variety of excitatory and inhibitory neuronal types which perform rate-and oscillation based computations. Using modeling, we show that both superficial and deep layers of the primary mouse visual cortex implement two ultrasensitive and bistable switches built on mutual inhibitory connectivity motives between SST, PV and VIP cells. The switches toggle pyramidal neurons between high and low firing rate states that are synchronized across layers through translaminar connectivity. Moreover, inhibited and disinhibited states are characterized by low- and high frequency oscillations, respectively, with layer-specific differences in frequency and power which show asymmetric changes during state transitions. These findings are consistent with a number of experimental observations and embed firing rate together with oscillatory changes within a switch interpretation of the microcircuit.

2000 ◽  
Vol 83 (6) ◽  
pp. 3430-3452 ◽  
Author(s):  
H.H.L.M. Goossens ◽  
A. J. Van Opstal

Trigeminal reflex blinks evoked near the onset of a saccade cause profound spatial-temporal perturbations of the saccade that are typically compensated in mid-flight. This paper investigates the influence of reflex blinks on the discharge properties of saccade-related burst neurons (SRBNs) in intermediate and deep layers of the monkey superior colliculus (SC). Twenty-nine SRBNs, recorded in three monkeys, were tested in the blink-perturbation paradigm. We report that the air puff stimuli, used to elicit blinks, resulted in a short-latency (∼10 ms) transient suppression of saccade-related SRBN activity. Shortly after this suppression (within 10–30 ms), all neurons resumed their activity, and their burst discharge then continued until the perturbed saccade ended near the extinguished target. This was found regardless whether the compensatory movement was into the cell's movement field or not. In the limited number of trials where no compensation occurred, the neurons typically stopped firing well before the end of the eye movement. Several aspects of the saccade-related activity could be further quantified for 25 SRBNs. It appeared that 1) the increase in duration of the high-frequency burst was well correlated with the (two- to threefold) increase in duration of the perturbed movement. 2) The number of spikes in the burst for control and perturbed saccades was quite similar. On average, the number of spikes increased only 14%, whereas the mean firing rate in the burst decreased by 52%. 3) An identical number of spikes were obtained between control and perturbed responses when burst and postsaccadic activity were both included in the spike count. 4) The decrease of the mean firing rate in the burst was well correlated with the decrease in the velocity of perturbed saccades. 5) Monotonic relations between instantaneous firing rate and dynamic motor error were obtained for control responses but not for perturbed responses. And 6) the high-frequency burst of SRBNs with short-lead and long-lead presaccadic activity (also referred to as burst and buildup neurons, respectively) showed very similar features. Our findings show that blinking interacts with the saccade premotor system already at the level of the SC. The data also indicate that a neural mechanism, rather than passive elastic restoring forces within the oculomotor plant, underlies the compensation for blink-related perturbations. We propose that these interactions occur downstream from the motor SC and that the latter may encode the desired displacement vector of the eyes by sending an approximately fixed number of spikes to the brainstem saccadic burst generator.


2020 ◽  
Vol 14 ◽  
Author(s):  
Yanting Yao ◽  
Mengmeng Wu ◽  
Lina Wang ◽  
Longnian Lin ◽  
Jiamin Xu

The prefrontal cortex (PFC) plays a central role in executive functions and inhibitory control over many cognitive behaviors. Dynamic changes in local field potentials (LFPs), such as gamma oscillation, have been hypothesized to be important for attentive behaviors and modulated by local interneurons such as parvalbumin (PV) cells. However, the precise relationships between the firing patterns of PV interneurons and temporal dynamics of PFC activities remains elusive. In this study, by combining in vivo electrophysiological recordings with optogenetics, we investigated the activities of prefrontal PV interneurons and categorized them into three subtypes based on their distinct firing rates under different behavioral states. Interestingly, all the three subtypes of interneurons showed strong phase-locked firing to cortical high frequency oscillations (HFOs), but not to theta or gamma oscillations, despite of behavior states. Moreover, we showed that sustained optogenetic stimulation (over a period of 10 s) of PV interneurons can consequently modulate the activities of local pyramidal neurons. Interestingly, such optogenetic manipulations only showed moderate effects on LFPs in the PFC. We conclude that prefrontal PV interneurons are consist of several subclasses of cells with distinct state-dependent modulation of firing rates, selectively coupled to HFOs.


1996 ◽  
Vol 76 (6) ◽  
pp. 4180-4184 ◽  
Author(s):  
D. Plenz ◽  
S. T. Kitai

1. Rhythmic cortical activity was investigated with intracellular recordings in cortex-striatum-mesencephalon organotypic cultures grown for 42 +/- 3 (SE) days in vitro. 2. Electrical stimulation of supragranular layers induced a self-sustained high-frequency oscillation (HFO) in pyramidal neurons and interneurons. 3. The HFO started 197 +/- 39 ms after stimulation and had a mean duration of 1.0 +/- 0.2 s and an initial frequency of 38 +/- 2 Hz. A decrease in frequency at a rate of 11.5 +/- 2.7 Hz/s started on average 547 +/- 109 ms after the onset of the HFO. 4. During the HFO, local interneurons and pyramidal neurons synchronized their activities. The synaptic origin of the HFO was confirmed by its reversal potential at -57 +/- 4 mV. 5. These results suggest that a self-maintained HFO can be induced in local cortical circuits by excitation of supragranular layers. This HFO would facilitate synchronization between distant cortical and thalamic regions.


2021 ◽  
Author(s):  
Wilhelm Braun ◽  
Raoul-Martin Memmesheimer

Hippocampal sharp wave/ripple oscillations are a prominent pattern of collective activity, which consists of a strong overall increase of activity with onmodulated (140 − 200 Hz) ripple oscillations. Despite its prominence and its experimentally demonstrated importance for memory consolidation, the mechanisms underlying its generation are to date not understood. Several models assume that recurrent networks of inhibitory cells alone can explain the generation and main characteristics of the ripple oscillations. Recent experiments, however, indicate that in addition to inhibitory basket cells, the pattern requires in vivo the activity of the local population of excitatory pyramidal cells. Here we study a model for networks in the hippocampal region CA1 incorporating such a local excitatory population of pyramidal neurons and investigate its ability to generate ripple oscillations using extensive simulations. We find that with biologically plausible values for single neuron, synapse and connectivity parameters, random connectivity and absent strong feedforward drive to the inhibitory population, oscillation patterns similar to in vivo sharp wave/ripples can only be generated if excitatory cell spiking is triggered by short pulses of external excitation. Specifically, whereas temporally broad excitation can lead to high-frequency oscillations in the ripple range, sparse pyramidal cell activity is only obtained with pulse-like external CA3 excitation. Further simulations indicate that such short pulses could originate from dendritic spikes in the apical or basal dendrites of CA1 pyramidal cells, which are triggered by coincident spike arrivals from hippocampal region CA3. Finally we show that replay of sequences by pyramidal neurons and ripple oscillations can arise intrinsically in CA1 due to structured connectivity that gives rise to alternating excitatory pulse and inhibitory gap coding; the latter implies phases of silence in specific basket cell groups and selective disinhibition of groups of pyramidal neurons. This general mechanism for sequence generation leads to sparse pyramidal cell and dense basket cell spiking, does not rely on synfire chain-like feedforward excitation and may be relevant for other brain regions as well.


Epilepsia ◽  
2021 ◽  
Author(s):  
Nicole E. C. Klink ◽  
Willemiek J. E. M. Zweiphenning ◽  
Cyrille H. Ferrier ◽  
Peter H. Gosselaar ◽  
Kai J. Miller ◽  
...  

Author(s):  
Lotte Noorlag ◽  
Maryse A. van 't Klooster ◽  
Alexander C. van Huffelen ◽  
Nicole E.C. van Klink ◽  
Manon J.N.L. Benders ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document