surface eeg
Recently Published Documents


TOTAL DOCUMENTS

62
(FIVE YEARS 17)

H-INDEX

15
(FIVE YEARS 1)

PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0262417
Author(s):  
Cédric Simar ◽  
Robin Petit ◽  
Nichita Bozga ◽  
Axelle Leroy ◽  
Ana-Maria Cebolla ◽  
...  

Objective Different visual stimuli are classically used for triggering visual evoked potentials comprising well-defined components linked to the content of the displayed image. These evoked components result from the average of ongoing EEG signals in which additive and oscillatory mechanisms contribute to the component morphology. The evoked related potentials often resulted from a mixed situation (power variation and phase-locking) making basic and clinical interpretations difficult. Besides, the grand average methodology produced artificial constructs that do not reflect individual peculiarities. This motivated new approaches based on single-trial analysis as recently used in the brain-computer interface field. Approach We hypothesize that EEG signals may include specific information about the visual features of the displayed image and that such distinctive traits can be identified by state-of-the-art classification algorithms based on Riemannian geometry. The same classification algorithms are also applied to the dipole sources estimated by sLORETA. Main results and significance We show that our classification pipeline can effectively discriminate between the display of different visual items (Checkerboard versus 3D navigational image) in single EEG trials throughout multiple subjects. The present methodology reaches a single-trial classification accuracy of about 84% and 93% for inter-subject and intra-subject classification respectively using surface EEG. Interestingly, we note that the classification algorithms trained on sLORETA sources estimation fail to generalize among multiple subjects (63%), which may be due to either the average head model used by sLORETA or the subsequent spatial filtering failing to extract discriminative information, but reach an intra-subject classification accuracy of 82%.


2021 ◽  
Vol 15 ◽  
Author(s):  
Xiaodong Zhang ◽  
Zhufeng Lu ◽  
Teng Zhang ◽  
Hanzhe Li ◽  
Yachun Wang ◽  
...  

Electroencephalogram (EEG) modeling in brain-computer interface (BCI) provides a theoretical foundation for its development. However, limited by the lack of guidelines in model parameter selection and the inability to obtain personal tissue information in practice, EEG modeling in BCI is mainly focused on the theoretical qualitative level which shows a gap between the theory and its application. Based on such problems, this work combined the surface EEG simulation with a converter based on the generative adversarial network (GAN), to establish the connection from simulated EEG to its application in BCI classification. For the scalp EEGs modeling, a mathematical model was built according to the physics of surface EEG, which consisted of the parallel 3-population neural mass model, the equivalent dipole, and the forward computation. For application, a converter based on the conditional GAN was designed, to transfer the simulated theoretical-only EEG to its practical version, in the lack of individual bio-information. To verify the feasibility, based on the latest microexpression-assisted BCI paradigm proposed by our group, the converted simulated EEGs were used in the training of BCI classifiers. The results indicated that, compared with training with insufficient real data, by adding the simulated EEGs, the overall performance showed a significant improvement (P = 0.04 < 0.05), and the test performance can be improved by 2.17% ± 4.23, in which the largest increase was up to 12.60% ± 1.81. Through this work, the link from theoretical EEG simulation to BCI classification has been initially established, providing an enhanced novel solution for the application of EEG modeling in BCI.


2021 ◽  
Author(s):  
Berjo Rijnders ◽  
Emin Erkan Korkmaz ◽  
Funda Yildirim

Objective: This study investigates the performance of a CNN algorithm on epilepsy diagnosis. Without pathology, diagnosis involves long and costly electroencephalographic (EEG) monitoring. Novel approaches may overcome this by comparing brain connectivity using graph metrics. This study, however, uses deep learning to learn connectivity patterns directly from easily acquired EEG data. Approach: A convolutional neural network (CNN) algorithm was applied on directed Granger causality (GC) connectivity measures, derived from 50 seconds of resting-state surface EEG recordings from 30 subjects with epilepsy and a 30 subject control group. Main results: The learned CNN filters reflected reduced delta band connectivity in frontal regions and increased left lateralized frontal-posterior gamma band connectivity. A diagnosis accuracy of 85% (F1-score 85%) was achieved by an ensemble of CNN models, each trained on differently prepared data from different electrode combinations. Conclusions: Appropriate preparation of connectivity data enables generic CNN algorithms to be used for detection of multiple discriminative epileptic features. Differential patterns revealed in this study may help to shed light on underlying altered cognitive abilities in epilepsy patients. Significance: The accuracy achieved in this study shows that, in combination with other methods, this approach could prove a valuable clinical decision support system for epilepsy diagnosis.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Thomas Schreiner ◽  
Marit Petzka ◽  
Tobias Staudigl ◽  
Bernhard P. Staresina

AbstractSleep is thought to support memory consolidation via reactivation of prior experiences, with particular electrophysiological sleep signatures (slow oscillations (SOs) and sleep spindles) gating the information flow between relevant brain areas. However, empirical evidence for a role of endogenous memory reactivation (i.e., without experimentally delivered memory cues) for consolidation in humans is lacking. Here, we devised a paradigm in which participants acquired associative memories before taking a nap. Multivariate decoding was then used to capture endogenous memory reactivation during non-rapid eye movement (NREM) sleep in surface EEG recordings. Our results reveal reactivation of learning material during SO-spindle complexes, with the precision of SO-spindle coupling predicting reactivation strength. Critically, reactivation strength (i.e. classifier evidence in favor of the previously studied stimulus category) in turn predicts the level of consolidation across participants. These results elucidate the memory function of sleep in humans and emphasize the importance of SOs and spindles in clocking endogenous consolidation processes.


Author(s):  
Lotte Noorlag ◽  
Maryse A. van 't Klooster ◽  
Alexander C. van Huffelen ◽  
Nicole E.C. van Klink ◽  
Manon J.N.L. Benders ◽  
...  

2021 ◽  
Vol 11 (4) ◽  
pp. 229
Author(s):  
Parisa Rangraz ◽  
FereidounNowshiravan Rahatabad ◽  
Masood Dalir ◽  
AliMotie Nasrabadi

2020 ◽  
pp. 155005942098241
Author(s):  
Robert P. Turner

This brief article is an overview of my personal experience over the past almost 10 years of the clinical use of EEG and quantitative EEG (qEEG) functional neuroimaging in a busy pediatric neurology practice. The concomitant use of surface EEG and functional electromagnetic EEG neuroimaging/qEEG in clinical practice provides significant additional clinical and neurophysiologic information. The qEEG is a noninvasive, inexpensive, portable technique with high temporal resolution (milliseconds) and improving spatial resolution (down to 3 mm3) and is an appropriate and validated tool for investigation of abnormal brain dynamics and connectivity of neuronal networks in clinical disorders of the brain. This article describes the daily applicability and utility of this modality in assisting diagnosis and clinical management of patients with a wide variety of presenting symptoms, including headaches, tics, autism spectrum disorder, inattention, sleep dysregulation, anxiety, and depression. The ease of data acquisition and analysis in clinical practices, coupled with skilled interpretation and clinical application, makes this tool one of the most valuable clinical tools to complement a thorough history and examination process.


Sign in / Sign up

Export Citation Format

Share Document