scholarly journals Contributions by N-terminal Domains to NMDA Receptor Currents

2020 ◽  
Author(s):  
Stacy A. Amico-Ruvio ◽  
Meaghan A. Paganelli ◽  
Jamie A. Abbott ◽  
Jason M. Myers ◽  
Eileen M Kasperek ◽  
...  

ABSTRACTTo investigate the role of the N-terminal domains (NTDs) in NMDA receptor signaling we used kinetic analyses of one-channel currents and compared the reaction mechanism of recombinant wild-type GluN1/GluN2A and GluN1/GluN2B receptors with those observed for NDT-lacking receptors. We found that truncated receptors maintained the fundamental gating mechanism characteristic of NMDA receptors, which includes a multi-state activation sequence, desensitization steps, and mode transitions. This result establishes that none of the functionally-defined NMDA receptor activation events require the NTD. Notably, receptors that lacked the entire NTD layer retained isoform-specific kinetics. Together with previous reports, these results demonstrate that the entire gating machinery of NMDA receptors resides within a core domain that contains the ligand-binding and the channel-forming transmembrane domains, whereas the NTD and C-terminal layers serve modulatory functions, exclusively.

1990 ◽  
Vol 64 (5) ◽  
pp. 1413-1428 ◽  
Author(s):  
K. Fox ◽  
H. Sato ◽  
N. Daw

1. A study was made of the relative contribution of N-methyl-D-aspartate (NMDA) and non-NMDA receptors to the visual responses of cells in different layers of the cat visual cortex at different levels of excitatory drive (which was varied by altering the stimulus contrast). 2. Receptive fields were mapped for 121 cells in area 17 of cat cortex. Cells were characterized to determine the optimal visual stimulus, the brightness of which was then varied relative to background luminance to construct a contrast-response (C-R) curve for each cell. Curves were made during control conditions and during application of agonists (NMDA and quisqualate) and/or antagonists [(D)-2-amino-5-phosphonovaleric acid (D-APV) and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX)] to examine the excitatory amino acid components of the visual response. 3. Threshold responses were obtained with stimuli between 1/60 and 1.8 X background luminance. The cell response, measured by firing rate, was linearly related to stimulus contrast over 1-2 decades and saturated at higher contrasts. 4. Application of APV reduced the slope of the linear portion of the C-R curve for cells located in layers II and III (average reduction, 59% of control). APV did not decrease the threshold to stimulation. The "just suprathreshold" responses to stimulation were reduced by the same proportion as the saturation responses for individual cells. The principal effect was therefore to reduce the gain of the C-R curve in these layers. 5. Application of APV reduced the spontaneous activity of cells located in layers IV, V, and VI with little if any effect on the gain of the C-R curve. This suggests a tonic background level of NMDA-receptor activation in these layers, which is not directly related to the visual response. 6. Low levels of NMDA increased the gain of the C-R curve in layers II/III and V/VI. On the other hand, low levels of quisqualate increased the overall level of firing without affecting the gain of the C-R curve. NMDA did not increase the gain of the curve in layer IV. 7. These experiments show that visual stimuli that produce just suprathreshold responses activate NMDA receptors. The degree of activation is proportionally the same for small responses and large responses for an individual cell. Rather than finding a threshold for NMDA-receptor activation, a continuous range of NMDA-receptor influence was observed over the entire response range.(ABSTRACT TRUNCATED AT 250 WORDS)


2009 ◽  
Vol 101 (5) ◽  
pp. 2290-2296 ◽  
Author(s):  
Felipe Espinosa ◽  
Ege T. Kavalali

Under physiological conditions N-methyl-d-aspartate (NMDA) receptor activation requires coincidence of presynaptic glutamate release and postsynaptic depolarization due to the voltage-dependent block of these receptors by extracellular Mg2+. Therefore spontaneous neurotransmission in the absence of action potential firing is not expected to lead to significant NMDA receptor activation. Here we tested this assumption in layer IV neurons in neocortex at their resting membrane potential (approximately −67 mV). In long-duration stable recordings, we averaged a large number of miniature excitatory postsynaptic currents (mEPSCs, >100) before or after application of dl-2 amino 5-phosphonovaleric acid, a specific blocker of NMDA receptors. The difference between the two mEPSC waveforms showed that the NMDA current component comprises ∼20% of the charge transfer during an average mEPSC detected at rest. Importantly, the contribution of the NMDA component was markedly enhanced at membrane potentials expected for the depolarized up states (approximately −50 mV) that cortical neurons show during slow oscillations in vivo. In addition, partial block of the α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor component of the mEPSCs did not cause a significant reduction in the NMDA component, indicating that potential AMPA receptor-driven local depolarizations did not drive NMDA receptor activity at rest. Collectively these results indicate that NMDA receptors significantly contribute to signaling at rest in the absence of dendritic depolarizations or concomitant AMPA receptor activity.


2010 ◽  
Vol 34 (8) ◽  
pp. S73-S73
Author(s):  
XiaoCheng Zhou ◽  
Mei Lv ◽  
ZiQiang Luo ◽  
Mingjie Wang ◽  
Xiaohe Yu ◽  
...  

1992 ◽  
Vol 8 (6) ◽  
pp. 545-555 ◽  
Author(s):  
Manuel Esguerra ◽  
Young H. Kwon ◽  
Mriganka Sur

AbstractWe used an in vitro preparation of the ferret lateral geniculate nucleus (LGN) to examine the role of the NMDA class of excitatory amino acid (EAA) receptors in retinogeniculate transmission. Intracellular recordings revealed that blockade of NMDA receptors both shortened the time course and reduced the amplitude of fast and slow components of excitatory postsynaptic potentials (EPSPs) evoked by optic tract stimulation. The amplitude and width of the EPSPs mediated by NMDA receptors increased as membrane potential was depolarized towards spike threshold. Individual LGN cells were influenced to varying extents by blockade of NMDA receptors; NMDA and non-NMDA receptor blockade together attenuated severely the entire retinogeniculate EPSP. The dependence of all components of retinogeniculate EPSPs (and action potentials) on NMDA receptor activation supports the hypothesis that the NMDA receptor participates in fast (<10 ms) synaptic events underlying conventional retinogeniculate transmission. The voltage dependence of the NMDA receptor-gated conductance suggests strongly that the transmission of retinal information through the LGN is subject to modulation by extraretinal inputs that affect the membrane potential of LGN neurons.


Sign in / Sign up

Export Citation Format

Share Document