Retinogeniculate EPSPs recorded intracellularly in the ferret lateral geniculate nucleus in vitro: Role of NMDA receptors

1992 ◽  
Vol 8 (6) ◽  
pp. 545-555 ◽  
Author(s):  
Manuel Esguerra ◽  
Young H. Kwon ◽  
Mriganka Sur

AbstractWe used an in vitro preparation of the ferret lateral geniculate nucleus (LGN) to examine the role of the NMDA class of excitatory amino acid (EAA) receptors in retinogeniculate transmission. Intracellular recordings revealed that blockade of NMDA receptors both shortened the time course and reduced the amplitude of fast and slow components of excitatory postsynaptic potentials (EPSPs) evoked by optic tract stimulation. The amplitude and width of the EPSPs mediated by NMDA receptors increased as membrane potential was depolarized towards spike threshold. Individual LGN cells were influenced to varying extents by blockade of NMDA receptors; NMDA and non-NMDA receptor blockade together attenuated severely the entire retinogeniculate EPSP. The dependence of all components of retinogeniculate EPSPs (and action potentials) on NMDA receptor activation supports the hypothesis that the NMDA receptor participates in fast (<10 ms) synaptic events underlying conventional retinogeniculate transmission. The voltage dependence of the NMDA receptor-gated conductance suggests strongly that the transmission of retinal information through the LGN is subject to modulation by extraretinal inputs that affect the membrane potential of LGN neurons.

1999 ◽  
Vol 81 (2) ◽  
pp. 702-711 ◽  
Author(s):  
J. Julius Zhu ◽  
William W. Lytton ◽  
Jin-Tang Xue ◽  
Daniel J. Uhlrich

Intrinsic oscillation in interneurons of the rat lateral geniculate nucleus. By using the whole cell patch recording technique in vitro, we examined the voltage-dependent firing patterns of 69 interneurons in the rat dorsal lateral geniculate nucleus (LGN). When held at a hyperpolarized membrane potential, all interneurons responded with a burst of action potentials. In 48 interneurons, larger current pulses produced a bursting oscillation. When relatively depolarized, some interneurons produced a tonic train of action potentials in response to a depolarizing current pulse. However, most interneurons produced only oscillations, regardless of polarization level. The oscillation was insensitive to the bath application of a combination of blockers to excitatory and inhibitory synaptic transmission, including 30 μM 6,7-dinitroquinoxaline-2,3-dione, 100 μM (±)-2-amino-5-phosphonopentanoic acid, 20 μM bicuculline, and 2 mM saclofen, suggesting an intrinsic event. The frequency of the oscillation in interneurons was dependent on the intensity of the injection current. Increasing current intensity increased the oscillation frequency. The maximal frequency of the oscillation was 5–15 Hz for most cells, with some ambiguity caused by the difficulty of precisely defining a transition from oscillatory to regular firing behavior. In contrast, the interneuron oscillation was little affected by preceding depolarizing and hyperpolarizing pulses. In addition to being elicited by depolarizing current injections, the oscillation could also be initiated by electrical stimulation of the optic tract when the interneurons were held at a depolarized membrane potential. This suggests that interneurons may be recruited into thalamic oscillations by synaptic inputs. These results indicate that interneurons may play a larger role in thalamic oscillations than was previously thought.


2000 ◽  
Vol 83 (5) ◽  
pp. 2610-2615 ◽  
Author(s):  
Qingbo Tang ◽  
Ronald M. Lynch ◽  
Frank Porreca ◽  
Josephine Lai

The opioid peptide dynorphin A is known to elicit a number of pathological effects that may result from neuronal excitotoxicity. An up-regulation of this peptide has also been causally related to the dysesthesia associated with inflammation and nerve injury. These effects of dynorphin A are not mediated through opioid receptor activation but can be effectively blocked by pretreatment with N-methyl-d-aspartate (NMDA) receptor antagonists, thus implicating the excitatory amino acid system as a mediator of the actions of dynorphin A and/or its fragments. A direct interaction between dynorphin A and the NMDA receptors has been well established; however the physiological relevance of this interaction remains equivocal. This study examined whether dynorphin A elicits a neuronal excitatory effect that may underlie its activation of the NMDA receptors. Calcium imaging of individual cultured cortical neurons showed that the nonopioid peptide dynorphin A(2-17) induced a time- and dose-dependent increase in intracellular calcium. This excitatory effect of dynorphin A(2-17) was insensitive to (+)-5-methyl-10,11-dihydro-5 H-dibenzo[ a,d]-cyclohepten-5,10-imine (MK-801) pretreatment in NMDA-responsive cells. Thus dynorphin A stimulates neuronal cells via a nonopioid, non-NMDA mechanism. This excitatory action of dynorphin A could modulate NMDA receptor activity in vivo by enhancing excitatory neurotransmitter release or by potentiating NMDA receptor function in a calcium-dependent manner. Further characterization of this novel site of action of dynorphin A may provide new insight into the underlying mechanisms of dynorphin excitotoxicity and its pathological role in neuropathy.


1991 ◽  
Vol 65 (3) ◽  
pp. 454-467 ◽  
Author(s):  
J. Keifer ◽  
J. C. Houk

1. Bursts of discharge have been recorded in the red nucleus in several species and are thought to represent the expression of motor commands. A cerebellorubral circuit comprised of recurrent connections among the cerebellum, red nucleus, and reticular formation was postulated to function as a positive feedback loop that generates these motor commands and transmits them to the spinal cord via the rubrospinal pathway. We have used an in vitro preparation from the turtle that leaves the circuitry connecting the cerebellum, brain stem, and spinal cord intact to study the role of excitatory amino acid neurotransmitters and recurrent excitation in mediating the generation of burst discharges in the red nucleus. 2. Burst discharges were recorded extracellularly from single cells in the red nucleus in response to single pulse or brief train stimulation of the contralateral spinal cord or brief train stimuli applied to the ipsilateral cerebellar cortex. The firing characteristics and pharmacologic sensitivities of the bursts were independent of the type of stimulus used. The bursts had long durations ranging from 2 to 17 s and showed spike frequency adaptation. 3. Transection of the cerebellar peduncle, which eliminates inhibition impinging onto the cerebellorubral circuit, greatly enhanced the spontaneous activity and burst discharges recorded in the contralateral red nucleus. Furthermore, bath application of a solution containing elevated levels of calcium and magnesium blocked the expression of burst discharges even though synaptic activation of the neurons was not blocked. 4. The possibility that excitatory amino acid receptors mediate burst responses in the red nucleus was investigated in light of the antagonistic effects of elevated magnesium ions on bursting. Bath application of 100 microns DL-2-amino-5-phosphonovaleric acid (APV), a specific N-methyl-D-aspartate (NMDA) receptor antagonist; [10 microM 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX)], a specific non-NMDA receptor antagonist; or 100 microM, DL-2-amino-4-phosphonobutyric acid (AP4), an agonist of a fourth class of excitatory amino acid receptor, blocked burst activity in the red nucleus. With a multibarreled pipette for simultaneous ejection of drug and recording, iontophoresis of APV or CNQX into the red nucleus blocked bursting whereas AP4 failed to show a significant effect. These data suggest that red nucleus neurons have both NMDA and non-NMDA receptors. The site of action of the AP4-sensitive receptor appears to be elsewhere in the cerebellorubral circuit. 5. Iontophoretic application of excitatory amino acid receptor agonists NMDA and quisqualate (Q) induced excitation of red nucleus neurons.(ABSTRACT TRUNCATED AT 400 WORDS)


2009 ◽  
Vol 101 (4) ◽  
pp. 1761-1773 ◽  
Author(s):  
G. Govindaiah ◽  
Charles L. Cox

The ventral lateral geniculate nucleus (vLGN) has been implicated in numerous functions including circadian rhythms, brightness discrimination, pupillary light reflex, and other visuomotor functions. The contribution of inhibitory mechanisms in the regulation of vLGN neuron excitability remains unexplored. We examined the actions of metabotropic glutamate receptor (mGluR) activation on the intrinsic excitability and inhibitory synaptic transmission in different lamina of vLGN. Activation of mGluRs exerts distinct pre- and postsynaptic actions in vLGN neurons. In the lateral magnocellular subdivision of vLGN (vLGNl), the general mGluR agonist (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid (ACPD) enhanced the frequency of GABAA receptor-mediated spontaneous inhibitory postsynaptic currents (sIPSC) that persisted in the presence of sodium channel blocker tetrodotoxin (TTX) in a subpopulation of neurons (TTX insensitive). This increase is attributed to the increased output of dendritic GABA release from vLGN interneurons. In contrast, in the medial subdivision of vLGN (vLGNm), the mGluR agonist-mediated increase in sIPSC frequency was completely blocked by TTX. The selective Group I mGluR agonist ( RS)-3,5-dihydroxyphenylglycine (DHPG) increased sIPSC frequency, whereas the selective Group II mGluR agonist (2 R, 4 R)-4-aminopyrrolidine-2,4-dicarboxylate (APDC) significantly decreased sIPSC frequency in vLGNl neurons. Optic tract stimulation also produced an mGluR-dependent increase in sIPSC frequency in vLGNl neurons. In contrast, we were unable to synaptically evoke alterations in sIPSC activity in vLGNm neurons. In addition to these presynaptic actions, DHPG depolarized both vLGNl and vLGNm neurons. In vLGN interneurons, mGluR activation produced opposing actions: APDC hyperpolarized the membrane potential, whereas DHPG produced a membrane depolarization. The present findings demonstrate diverse actions of mGluRs on vLGN neurons localized within different vLGN lamina. Considering these different lamina are coupled with distinct functional roles, thus these diverse actions may be involved in distinctive forms of visual and visuomotor information processing.


2003 ◽  
Vol 90 (2) ◽  
pp. 1063-1070 ◽  
Author(s):  
Jokūbas Ziburkus ◽  
Fu-Sun Lo ◽  
William Guido

Using intracellular recordings in an isolated (in vitro) brain stem preparation, we examined the inhibitory postsynaptic responses of developing neurons in the dorsal lateral geniculate nucleus (LGN) of the rat. As early as postnatal day (P) 1–2, 31% of all excitatory postsynaptic (EPSP) activity evoked by electrical stimulation of the optic tract was followed by inhibitory postsynaptic potentials (IPSPs). By P5, 98% of all retinally evoked EPSPs were followed by IPSP activity. During the first postnatal week, IPSPs were mediated largely by GABAA receptors. Additional GABAB-mediated IPSPs emerged at P3–4 but were not prevalent until after the first postnatal week. Experiments involving the separate stimulation of each optic nerve indicated that developing LGN cells were binocularly innervated. At P11–14, it was common to evoke EPSP/IPSP pairs by stimulating either the contralateral or ipsilateral optic nerve. During the third postnatal week, binocular excitatory responses were encountered far less frequently. However, a number of cells still maintained a binocular inhibitory response. These results provide insight about the ontogeny and nature of postsynaptic inhibitory activity in the LGN during the period of retinogeniculate axon segregation.


2003 ◽  
Vol 284 (3) ◽  
pp. C757-C768 ◽  
Author(s):  
S. F. Davis ◽  
C. L. Linn

Catfish ( Ictalurus punctatus) cone horizontal cells contain N-methyl-d-aspartate (NMDA) receptors, the function of which has yet to be determined. In the present study, we have examined the effect of NMDA receptor activation on voltage-gated ion channel activity. NMDA receptor activation produced a long-term downregulation of voltage-gated sodium and calcium currents but had no effect on the delayed rectifying potassium current. NMDA's effect was eliminated in the presence of AP-7. To determine whether NMDA receptor activation had functional implications, isolated catfish cone horizontal cells were current clamped to mimic the cell's physiological response. When horizontal cells were depolarized, they elicited a single depolarizing overshoot and maintained a depolarized steady state membrane potential. NMDA reduced the amplitude of the depolarizing overshoot and increased the depolarized steady-state membrane potential. Both effects of NMDA were eliminated in the presence of AP-7. These results support the hypothesis that activation of NMDA receptors in catfish horizontal cells may affect the type of visual information conveyed through the distal retina.


1998 ◽  
Vol 89 (2) ◽  
pp. 456-466 ◽  
Author(s):  
Ren-Zhi Zhan ◽  
Naoshi Fujiwara ◽  
Hiroshi Endoh ◽  
Tomohiro Yamakura ◽  
Kiichiro Taga ◽  
...  

Background This study examined the effects of thiopental on intracellular calcium ([Ca2+]i) changes induced by membrane depolarization, N-methyl-D-aspartate (NMDA) receptor activation, and ischemia. Methods Experiments were performed in brain slices prepared from Wistar rats. [Ca2+]i measurements were taken on the CA1 pyramidal cell layer of the hippocampus or layers II to III of the somatosensory cortex using the fura-2 fluorescence technique. Membrane depolarization and NMDA receptor activation were induced by exposing slices to 60 mM K+ and 100 microM NMDA, respectively. In vitro ischemia was induced by superfusing slices with glucose-free Krebs solution equilibrated with 95% nitrogen and 5% carbon dioxide. Thiopental was applied 5 min before application of high K+ and NMDA, or before in vitro ischemia. Results Ischemia for 15 min produced a characteristic [Ca2+]i increase in both hippocampal and cortical slices. Thiopental prolonged the latency to the appearance of the [Ca2+]i plateau and reduced the magnitudes of increase in [Ca2+]i 8, 10, and 15 min after the onset of ischemia. Thiopental also suppressed the high K+- and NMDA-induced [Ca2+]i increases. The NMDA-induced [Ca2+]i increases were attenuated to a greater extent in cortical slices than were those in hippocampal slices. The inhibition of thiopental on the 200-microM NMDA-mediated [Ca2+]i response was confirmed in cultured cortical neurons. Conclusions The results indicate that thiopental attenuates ischemia-induced [Ca2+]i increases in the hippocampus and cortex in vitro, probably because of its inhibition of both voltage-gated calcium channels and NMDA receptors. The regionally different inhibition of thiopental on NMDA receptors may relate to its region-specific action against ischemia.


2020 ◽  
Author(s):  
Stacy A. Amico-Ruvio ◽  
Meaghan A. Paganelli ◽  
Jamie A. Abbott ◽  
Jason M. Myers ◽  
Eileen M Kasperek ◽  
...  

ABSTRACTTo investigate the role of the N-terminal domains (NTDs) in NMDA receptor signaling we used kinetic analyses of one-channel currents and compared the reaction mechanism of recombinant wild-type GluN1/GluN2A and GluN1/GluN2B receptors with those observed for NDT-lacking receptors. We found that truncated receptors maintained the fundamental gating mechanism characteristic of NMDA receptors, which includes a multi-state activation sequence, desensitization steps, and mode transitions. This result establishes that none of the functionally-defined NMDA receptor activation events require the NTD. Notably, receptors that lacked the entire NTD layer retained isoform-specific kinetics. Together with previous reports, these results demonstrate that the entire gating machinery of NMDA receptors resides within a core domain that contains the ligand-binding and the channel-forming transmembrane domains, whereas the NTD and C-terminal layers serve modulatory functions, exclusively.


Sign in / Sign up

Export Citation Format

Share Document