scholarly journals Development of antibody-dependent cell cytotoxicity function in HIV-1 antibodies

2020 ◽  
Author(s):  
Laura E. Doepker ◽  
Sonja Danon ◽  
Elias Harkins ◽  
Duncan Ralph ◽  
Zak Yaffe ◽  
...  

AbstractA prerequisite for the design of an HIV vaccine that elicits protective antibodies is understanding the developmental pathways that result in desirable antibody features. The development of antibodies that mediate antibody-dependent cellular cytotoxicity (ADCC) is particularly relevant because such antibodies have been associated with HIV protection in humans. We reconstructed the developmental pathways of six human HIV-specific ADCC antibodies using longitudinal antibody sequencing data. Most of the inferred naïve antibodies did not mediate detectable ADCC. Gain of antigen binding and ADCC function typically required mutations in complementarity determining regions of one or both chains. Enhancement of ADCC potency often required additional mutations in framework regions. Antigen binding affinity and ADCC activity were correlated, but affinity alone was not sufficient to predict ADCC potency. Thus, elicitation of human ADCC antibodies may require mutations that first enable high affinity antigen recognition, followed by mutations that optimize factors contributing to functional ADCC activity.

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Laura E Doepker ◽  
Sonja Danon ◽  
Elias Harkins ◽  
Duncan K Ralph ◽  
Zak Yaffe ◽  
...  

A prerequisite for the design of an HIV vaccine that elicits protective antibodies is understanding the developmental pathways that result in desirable antibody features. The development of antibodies that mediate antibody-dependent cellular cytotoxicity (ADCC) is particularly relevant because such antibodies have been associated with HIV protection in humans. We reconstructed the developmental pathways of six human HIV-specific ADCC antibodies using longitudinal antibody sequencing data. Most of the inferred naïve antibodies did not mediate detectable ADCC. Gain of antigen binding and ADCC function typically required mutations in complementarity determining regions of one or both chains. Enhancement of ADCC potency often required additional mutations in framework regions. Antigen binding affinity and ADCC activity were correlated, but affinity alone was not sufficient to predict ADCC potency. Thus, elicitation of broadly active ADCC antibodies may require mutations that enable high affinity antigen recognition along with mutations that optimize factors contributing to functional ADCC activity.


2006 ◽  
Vol 315 (1-2) ◽  
pp. 1-10 ◽  
Author(s):  
Wannee Kantakamalakul ◽  
Kovit Pattanapanyasat ◽  
Surat Jongrakthaitae ◽  
Vatcharain Assawadarachai ◽  
Silawun Ampol ◽  
...  

1998 ◽  
Vol 72 (1) ◽  
pp. 286-293 ◽  
Author(s):  
Osama Alsmadi ◽  
Shermaine A. Tilley

ABSTRACT The characteristics of antibody-dependent cellular cytotoxicity (ADCC) directed by a panel of human and chimpanzee antienvelope (anti-Env) monoclonal antibodies (MAbs) of different epitope specificities were studied; this was accomplished by using target cells expressing human immunodeficiency virus type 1 (HIV-1) Envs of either primary or laboratory-adapted strains. Human MAbs of similar apparent affinities (1 × 109 to 2 × 109 liters/mol) against either a “cluster II”-overlapping epitope of gp41 or against the CD4 binding site, V3 loop, or C5 domain of gp120 directed substantial and comparable levels of specific lysis against targets infected with laboratory-adapted strains of HIV-1. As expected, those MAbs specific for relatively conserved regions of Env generally exhibited ADCC activity against a broader range of HIV-1 strains than those directed against variable epitopes. Significant ADCC activities of selected MAbs against primary isolate Env-expressing cells were demonstrated. In addition, a new ADCC epitope in the V2 domain of gp120 was defined. CD56+ cells were demonstrated to be the effector cells in these studies by fluorescence-activated cell sorting followed by ADCC assays. Notably, all anti-Env MAbs tested in this study, including MAbs directed against each of the known neutralization epitope clusters in gp120, directed significant levels of ADCC against targets expressing Env of one or more HIV-1 strains. These results imply that many, if not most, HIV-1-neutralizing human Abs of high affinity (≥3 × 108 liters/mol in these studies) and of the immunoglobulin G1 (IgG1) subclass (i.e., the predominate IgG subclass) are capable of directing ADCC. Since neutralizing Abs have been associated with long-term survival following HIV-1 infection, this suggests that ADCC activity may be beneficial in vivo.


Author(s):  
Simon P. Kelow ◽  
Jared Adolf-Bryfogle ◽  
Roland L. Dunbrack

AbstractAntibody variable domains contain “complementarity determining regions” (CDRs), the loops that form the antigen binding site. CDRs1-3 are recognized as the canonical CDRs. However, a fourth loop sits adjacent to CDR1 and CDR2 and joins the D and E strands on the antibody v-type fold. This “DE loop” is usually treated as a framework region, even though mutations in the loop affect the conformation of the CDRs and residues in the DE loop occasionally contact antigen. We analyzed the length, structure, and sequence features of all DE loops in the Protein Data Bank, as well as millions of sequences from HIV-1 infected and naïve patients. We refer to the DE loop as H4 and L4 in the heavy and light chain respectively. Clustering the backbone conformations of the most common length of L4 (6 residues) reveals four conformations: two κ-only clusters, one λ-only cluster, and one mixed κ/λ cluster. The vast majority of H4 loops are length-8 and exist primarily in one conformation; a secondary conformation represents a small fraction of H4-8 structures. H4 sequence variability exceeds that of the antibody framework in naïve human high-throughput sequences, and both L4 and H4 sequence variability from λ and heavy germline sequences exceed that of germline framework regions. Finally, we identified dozens of structures in the PDB with insertions in the DE loop, all related to broadly neutralizing HIV-1 antibodies, as well as antibody sequences from high-throughput sequencing studies of HIV-infected individuals, illuminating a possible role in humoral immunity to HIV-1.


2018 ◽  
Vol 92 (18) ◽  
Author(s):  
Kun-Wei Chan ◽  
Ruimin Pan ◽  
Matthew Costa ◽  
Miroslaw K. Gorny ◽  
Shixia Wang ◽  
...  

ABSTRACTElucidating the structural basis of antibody (Ab) gene usage and affinity maturation of vaccine-induced Abs can inform the design of immunogens for inducing desired Ab responses in HIV vaccine development. Analyses of monoclonal Abs (MAbs) encoded by the same immunoglobulin genes at different stages of maturation can help to elucidate the maturation process. We have analyzed four human anti-V3 MAbs with the same VH1-3*01 and VL3-10*01 gene usage. Two MAbs, TA6 and TA7, were developed from a vaccinee in the HIV vaccine phase I trial DP6-001 with a polyvalent DNA prime/protein boost regimen, and two others, 311-11D and 1334, were developed from HIV-infected patients. The somatic hypermutation (SHM) rates in VH of vaccine-induced MAbs are lower than in chronic HIV infection-induced MAbs, while those in VL are comparable. Crystal structures of the antigen-binding fragments (Fabs) in complex with V3 peptides show that these MAbs bind the V3 epitope with a new cradle-binding mode and that the V3 β-hairpin lies along the antigen-binding groove, which consists of residues from both heavy and light chains. Residues conserved from the germ line sequences form specific binding pockets accommodating conserved structural elements of the V3 crown hairpin, predetermining the Ab gene selection, while somatically mutated residues create additional hydrogen bonds, electrostatic interactions, and van der Waals contacts, correlating with an increased binding affinity. Our data provide a unique example of germ line sequences determining the primordial antigen-binding sites and SHMs correlating with affinity maturation of Abs induced by vaccine and natural HIV infection.IMPORTANCEUnderstanding the structural basis of gene usage and affinity maturation for anti-HIV-1 antibodies may help vaccine design and development. Antibodies targeting the highly immunogenic third variable loop (V3) of HIV-1 gp120 provide a unique opportunity for detailed structural investigations. By comparing the sequences and structures of four anti-V3 MAbs at different stages of affinity maturation but of the same V gene usage, two induced by vaccination and another two by chronic infection, we provide a fine example of how germ line sequence determines the essential elements for epitope recognition and how affinity maturation improves the antibody's recognition of its epitope.


2019 ◽  
Vol 94 (4) ◽  
Author(s):  
David Easterhoff ◽  
Justin Pollara ◽  
Kan Luo ◽  
William D. Tolbert ◽  
Brianna Young ◽  
...  

ABSTRACT Induction of protective antibodies is a critical goal of HIV-1 vaccine development. One strategy is to induce nonneutralizing antibodies (NNAbs) that kill virus-infected cells, as these antibody specificities have been implicated in slowing HIV-1 disease progression and in protection. HIV-1 Env constant region 1 and 2 (C1C2) monoclonal antibodies (MAbs) frequently mediate potent antibody-dependent cellular cytotoxicity (ADCC), making them an important vaccine target. Here, we explore the effect of delayed and repetitive boosting of RV144 vaccine recipients with AIDSVAX B/E on the C1C2-specific MAb repertoire. It was found that boosting increased clonal lineage-specific ADCC breadth and potency. A ligand crystal structure of a vaccine-induced broad and potent ADCC-mediating C1C2-specific MAb showed that it bound a highly conserved Env gp120 epitope. Thus, boosting to affinity mature these types of IgG C1C2-specific antibody responses may be one method by which to make an improved HIV vaccine with higher efficacy than that seen in the RV144 trial. IMPORTANCE Over one million people become infected with HIV-1 each year, making the development of an efficacious HIV-1 vaccine an important unmet medical need. The RV144 human HIV-1 vaccine regimen is the only HIV-1 clinical trial to date to demonstrate vaccine efficacy. An area of focus has been on identifying ways by which to improve upon RV144 vaccine efficacy. The RV305 HIV-1 vaccine regimen was a follow-up boost of RV144 vaccine recipients that occurred 6 to 8 years after the conclusion of RV144. Our study focused on the effect of delayed boosting in humans on the vaccine-induced Env constant region 1 and 2 (C1C2)-specific antibody repertoire. It was found that boosting with an HIV-1 Env vaccine increased C1C2-specific antibody-dependent cellular cytotoxicity potency and breadth.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Gamze Isitman ◽  
Ivan Stratov ◽  
Stephen J. Kent

The HIV-1 genome is malleable and a difficult target tot vaccinate against. It has long been recognised that cytotoxic T lymphocytes and neutralising antibodies readily select for immune escape HIV variants. It is now also clear that NK cells can also select for immune escape. NK cells force immune escape through both direct Killer-immunoglobulin-like receptor (KIR)-mediated killing as well as through facilitating antibody-dependent cellular cytotoxicity (ADCC). These newer finding suggest NK cells and ADCC responses apply significant pressure to the virus. There is an opportunity to harness these immune responses in the design of more effective HIV vaccines.


2022 ◽  
Vol 12 ◽  
Author(s):  
William D. Tolbert ◽  
Dung N. Nguyen ◽  
Marina Tuyishime ◽  
Andrew R. Crowley ◽  
Yaozong Chen ◽  
...  

Passive transfer of monoclonal antibodies (mAbs) of human origin into Non-Human Primates (NHPs), especially those which function predominantly by a Fc-effector mechanism, requires an a priori preparation step, in which the human mAb is reengineered to an equivalent NHP IgG subclass. This can be achieved by changing both the Fc and Fab sequence while simultaneously maintaining the epitope specificity of the parent antibody. This Ab reengineering process, referred to as rhesusization, can be challenging because the simple grafting of the complementarity determining regions (CDRs) into an NHP IgG subclass may impact the functionality of the mAb. Here we describe the successful rhesusization of a set of human mAbs targeting HIV-1 envelope (Env) epitopes involved in potent Fc-effector function against the virus. This set includes a mAb targeting a linear gp120 V1V2 epitope isolated from a RV144 vaccinee, a gp120 conformational epitope within the Cluster A region isolated from a RV305 vaccinated individual, and a linear gp41 epitope within the immunodominant Cys-loop region commonly targeted by most HIV-1 infected individuals. Structural analyses confirm that the rhesusized variants bind their respective Env antigens with almost identical specificity preserving epitope footprints and most antigen-Fab atomic contacts with constant regions folded as in control RM IgG1s. In addition, functional analyses confirm preservation of the Fc effector function of the rhesusized mAbs including the ability to mediate Antibody Dependent Cell-mediated Cytotoxicity (ADCC) and antibody dependent cellular phagocytosis by monocytes (ADCP) and neutrophils (ADNP) with potencies comparable to native macaque antibodies of similar specificity. While the antibodies chosen here are relevant for the examination of the correlates of protection in HIV-1 vaccine trials, the methods used are generally applicable to antibodies for other purposes.


2009 ◽  
Vol 83 (17) ◽  
pp. 8705-8712 ◽  
Author(s):  
Qingquan Liu ◽  
Yongtao Sun ◽  
Suzannah Rihn ◽  
Anne Nolting ◽  
Peter Nicholas Tsoukas ◽  
...  

ABSTRACT Increasing evidence suggests that NK cells not only are critical in the initial host defense against pathogens but also may contribute to continued protection from human immunodeficiency virus type 1 (HIV-1) disease progression. NK cell cytolysis can be induced directly through diverse receptor families or can be induced indirectly through Fc receptors by antibodies mediating antibody-dependent cellular cytotoxicity (ADCC). ADCC has been implicated in both protection from simian immunodeficiency virus infection and slower progression of HIV-1 disease. ADCC activity declines with advancing infection, and yet the underlying mechanism for this dysfunction has not been defined, nor has it been determined whether the activity can be reconstituted. Here we demonstrate that NK cell-mediated ADCC is severely compromised in chronic HIV infection. The potency of ADCC function was directly correlated with baseline FcγRIIIa receptor (CD16) expression on NK cells. CD16 expression was negatively influenced by elevated expression of a group of enzymes, the matrix metalloproteinases (MMPs), normally involved in tissue/receptor remodeling. Inhibition of MMPs resulted in increased CD16 expression and augmented ADCC activity in response to antibody-coated target cells. These data suggest that MMP inhibitors may improve NK cell-mediated ADCC, which may provide subjects with an opportunity to harness the cytolytic power of NK cells through naturally occurring nonneutralizing HIV-specific antibodies.


Sign in / Sign up

Export Citation Format

Share Document