sequencing studies
Recently Published Documents


TOTAL DOCUMENTS

674
(FIVE YEARS 292)

H-INDEX

48
(FIVE YEARS 12)

2022 ◽  
Author(s):  
Christian Wake ◽  
Julie A. Schneider ◽  
Thor D. Stein ◽  
Joli Bregu ◽  
Adam Labadorf ◽  
...  

Obesity, the accumulation of body fat to excess, may cause serious negative health effects, including increased risk of heart disease, type 2 diabetes, stroke and certain cancers. The biology of obesity is complex and not well understood, involving both environmental and genetic factors and affecting metabolic and endocrine mechanisms in tissues of the gut, adipose, and brain. Previous RNA sequencing studies have identified transcripts associated with obesity and body mass index in blood and fat, often using animal models, but RNA sequencing studies in human brain tissue related to obesity have not been previously undertaken. We conducted both large and small RNA sequencing of hypothalamus (207 samples) and nucleus accumbens (276 samples) from individuals defined as consistently obese (124 samples), consistently normal weight as controls (148 samples) or selected without respect to BMI and falling within neither case nor control definition (211 samples), based on longitudinal BMI measures. The samples were provided by three cohort studies with brain donation programs; the Framingham Heart Study (FHS), the Religious Orders Study (ROS) and the Rush Memory and Aging Project (MAP). For each brain region and large/small RNA sequencing set, differential expression of obesity, BMI, brain region and sex was performed. Analyses were done transcriptome-wide as well as with a priori defined sets of obesity or BMI-associated mRNAs and microRNAs (miRNAs). There are sixteen mRNAs and five microRNAs that are differentially expressed (adjusted p < 0.05) by obesity or BMI in these tissues, several of which were validated with qPCR data. The results include many that are BMI-associated, such as APOBR and CES1, as well as many associated with the immune system and some with addiction, such as the gene sets 'cytokine signaling in immune system' and 'opioid signaling'. In spite of the relatively large number of samples, our study was likely under-powered to detect other transcripts or miRNA with relevant but smaller effects.


Genetics ◽  
2022 ◽  
Author(s):  
Diego Ortega-Del Vecchyo ◽  
Kirk E Lohmueller ◽  
John Novembre

Abstract Recent genome sequencing studies with large sample sizes in humans have discovered a vast quantity of low-frequency variants, providing an important source of information to analyze how selection is acting on human genetic variation. In order to estimate the strength of natural selection acting on low-frequency variants, we have developed a likelihood-based method that uses the lengths of pairwise identity-by-state between haplotypes carrying low-frequency variants. We show that in some non-equilibrium populations (such as those that have had recent population expansions) it is possible to distinguish between positive or negative selection acting on a set of variants. With our new framework, one can infer a fixed selection intensity acting on a set of variants at a particular frequency, or a distribution of selection coefficients for standing variants and new mutations. We show an application of our method to the UK10K phased haplotype dataset of individuals.


Author(s):  
Matthew J. Winans

: Microbiology has long been a keystone in fermentation and the utilization of yeast biology rein-forces molecular biotechnology as the pioneering frontier in brewing science. Consequently, modern understanding of the brewer’s yeast has faced significant refinement over the last few decades. This publication presents a condensed summation of Saccharomyces species dynamics with an emphasis on the relationship between traditional ale yeast, Saccharomyces cerevisiae, and the interspecific hybrids used in lager beer production, S. pastorianus. Introgression from other Sac-charomyces species is also touched on. The unique history of Saccharomyces cerevisiae and Saccharo-myces hybrids are exemplified by recent genomic sequencing studies aimed at categorizing brewing strains through phylogeny and redefining Saccharomyces species boundaries. Phylogenetic investigations highlight the genomic diversity of Saccharomyces cerevisiae ale strains long known to brewers by their fermentation characteristics and phenotypes. Discoveries of genomic contribu-tions from interspecific Saccharomyces species into the genome of S. cerevisiae strains is ever more apparent with increased investigations on the hybrid nature of modern industrial and historical fermentation yeast.


2021 ◽  
Author(s):  
Mehrman Chalaki ◽  
Luis J. Cruz ◽  
Sabien G. A. van Neerven ◽  
Joost Verhaagen ◽  
Albert Dahan ◽  
...  

The dorsal root ganglion is widely recognized as a potential target to treat chronic pain. A fundamental understanding of quantitative molecular and genomic changes during the late phase of pain is therefore indispensable. The authors performed a systematic literature review on injury-induced pain in rodent dorsal root ganglions at minimally 3 weeks after injury. So far, slightly more than 300 molecules were quantified on the protein or messenger RNA level, of which about 60 were in more than one study. Only nine individual sequencing studies were performed in which the most up- or downregulated genes varied due to heterogeneity in study design. Neuropeptide Y and galanin were found to be consistently upregulated on both the gene and protein levels. The current knowledge regarding molecular changes in the dorsal root ganglion during the late phase of pain is limited. General conclusions are difficult to draw, making it hard to select specific molecules as a focus for treatment.


Author(s):  
Robert Noble ◽  
Dominik Burri ◽  
Cécile Le Sueur ◽  
Jeanne Lemant ◽  
Yannick Viossat ◽  
...  

AbstractCharacterizing the mode—the way, manner or pattern—of evolution in tumours is important for clinical forecasting and optimizing cancer treatment. Sequencing studies have inferred various modes, including branching, punctuated and neutral evolution, but it is unclear why a particular pattern predominates in any given tumour. Here we propose that tumour architecture is key to explaining the variety of observed genetic patterns. We examine this hypothesis using spatially explicit population genetics models and demonstrate that, within biologically relevant parameter ranges, different spatial structures can generate four tumour evolutionary modes: rapid clonal expansion, progressive diversification, branching evolution and effectively almost neutral evolution. Quantitative indices for describing and classifying these evolutionary modes are presented. Using these indices, we show that our model predictions are consistent with empirical observations for cancer types with corresponding spatial structures. The manner of cell dispersal and the range of cell–cell interactions are found to be essential factors in accurately characterizing, forecasting and controlling tumour evolution.


Blood ◽  
2021 ◽  
Vol 138 (25) ◽  
pp. 2621-2631
Author(s):  
Elisa ten Hacken ◽  
Catherine J. Wu

Abstract Rapid advances in large-scale next-generation sequencing studies of human samples have progressively defined the highly heterogeneous genetic landscape of chronic lymphocytic leukemia (CLL). At the same time, the numerous challenges posed by the difficulties in rapid manipulation of primary B cells and the paucity of CLL cell lines have limited the ability to interrogate the function of the discovered putative disease “drivers,” defined in human sequencing studies through statistical inference. Mouse models represent a powerful tool to study mechanisms of normal and malignant B-cell biology and for preclinical testing of novel therapeutics. Advances in genetic engineering technologies, including the introduction of conditional knockin/knockout strategies, have opened new opportunities to model genetic lesions in a B-cell–restricted context. These new studies build on the experience of generating the MDR mice, the first example of a genetically faithful CLL model, which recapitulates the most common genomic aberration of human CLL: del(13q). In this review, we describe the application of mouse models to the studies of CLL pathogenesis and disease transformation from an indolent to a high-grade malignancy (ie, Richter syndrome [RS]) and treatment, with a focus on newly developed genetically inspired mouse lines modeling recurrent CLL genetic events. We discuss how these novel mouse models, analyzed using new genomic technologies, allow the dissection of mechanisms of disease evolution and response to therapy with greater depth than previously possible and provide important insight into human CLL and RS pathogenesis and therapeutic vulnerabilities. These models thereby provide valuable platforms for functional genomic analyses and treatment studies.


Author(s):  
Lipeng Wang ◽  
Hao Zhang ◽  
Sicheng Wang ◽  
Xiao Chen ◽  
Jiacan Su

Recognized for nearly 100 years, bone marrow adipocytes (BMAs) form bone marrow niches that contain hematopoietic and bone cells, the roles of which have long been underestimated. Distinct from canonical white, brown, and beige adipocytes, BMAs derived from bone marrow mesenchymal stromal cells possess unique characteristics and functions. Recent single-cell sequencing studies have revealed the differentiation pathway, and seminal works support the tenet that BMAs are critical regulators in hematopoiesis, osteogenesis, and osteoclastogenesis. In this review, we discuss the origin and differentiation of BMAs, as well as the roles of BMAs in hematopoiesis, osteogenesis, osteoclastogenesis, and immune regulation. Overall, BMAs represent a novel target for bone marrow-related diseases, including osteoporosis and leukemia.


2021 ◽  
pp. 109352662110511
Author(s):  
Mukul Vij ◽  
Srinivas Sankaranarayanan

Whole-exome sequencing studies have recently identified novel genes implicated in normal- or low-GGT pediatric cholestasis including ubiquitin-specific peptidase 53 ( USP53). We identified novel biallelic mutations in the USP53 gene in a 7-month-old infant with pruritus and progressive intrahepatic cholestasis. His liver biopsy showed portal and perivenular fibrosis with bland bilirubinostasis. His parents were asymptomatic heterozygous for the same mutation. He is currently on vitamin supplements and cholestyramine and his family has also been counseled for liver transplantation. Our report confirms that patients with biallelic mutation in USP53 develop cholestatic liver disease.


2021 ◽  
Vol 12 ◽  
Author(s):  
Davide Bolognini ◽  
Alberto Magi

Structural variants (SVs) are genomic rearrangements that involve at least 50 nucleotides and are known to have a serious impact on human health. While prior short-read sequencing technologies have often proved inadequate for a comprehensive assessment of structural variation, more recent long reads from Oxford Nanopore Technologies have already been proven invaluable for the discovery of large SVs and hold the potential to facilitate the resolution of the full SV spectrum. With many long-read sequencing studies to follow, it is crucial to assess factors affecting current SV calling pipelines for nanopore sequencing data. In this brief research report, we evaluate and compare the performances of five long-read SV callers across four long-read aligners using both real and synthetic nanopore datasets. In particular, we focus on the effects of read alignment, sequencing coverage, and variant allele depth on the detection and genotyping of SVs of different types and size ranges and provide insights into precision and recall of SV callsets generated by integrating the various long-read aligners and SV callers. The computational pipeline we propose is publicly available at https://github.com/davidebolo1993/EViNCe and can be adjusted to further evaluate future nanopore sequencing datasets.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Michael R. Clay ◽  
Anand Patel ◽  
Quynh Tran ◽  
Dale J. Hedges ◽  
Ti-Cheng Chang ◽  
...  

AbstractRhabdomyosarcomas (RMS) represent a family of aggressive soft tissue sarcomas that present in both children and adults. Pathologic risk stratification for RMS has been based on histologic subtype, with poor outcomes observed in alveolar rhabdomyosarcoma (ARMS) and the adult-type pleomorphic rhabdomyosarcoma (PRMS) compared to embryonal rhabdomyosarcoma (ERMS). Genomic sequencing studies have expanded the spectrum of RMS, with several new molecularly defined entities, including fusion-driven spindle cell/sclerosing rhabdomyosarcoma (SC/SRMS) and MYOD1-mutant SC/SRMS. Comprehensive genomic analysis has previously defined the mutational and copy number spectrum for the more common ERMS and ARMS and revealed corresponding methylation signatures. Comparatively, less is known about epigenetic correlates for the rare SC/SRMS or PRMS histologic subtypes. Herein, we present exome and RNA sequencing, copy number analysis, and methylation profiling of the largest cohort of molecularly characterized RMS samples to date. In addition to ARMS and ERMS, we identify two novel methylation subtypes, one having SC/SRMS histology and defined by MYOD1 p. L122R mutations and the other matching adult-type PRMS. Selected tumors from adolescent patients grouped with the PRMS methylation class, expanding the age range of these rare tumors. Limited follow-up data suggest that pediatric tumors with MYOD1-mutations are associated with an aggressive clinical course.


Sign in / Sign up

Export Citation Format

Share Document