scholarly journals Plasticity impairment alters community structure but permits successful pattern separation in a hippocampal network model

2020 ◽  
Author(s):  
Samantha N. Schumm ◽  
David Gabrieli ◽  
David F. Meaney

AbstractPatients who suffer from traumatic brain injury (TBI) often complain of learning and memory problems. Their symptoms are principally mediated by the hippocampus and the ability to adapt to stimulus, also known as neural plasticity. Therefore, one plausible injury mechanism is plasticity impairment, which currently lacks comprehensive investigation across TBI research. For these studies, we used a computational network model of the hippocampus that includes the dentate gyrus, CA3, and CA1 with neuron-scale resolution. We simulated mild injury through weakened spike-timing-dependent plasticity (STDP), which modulates synaptic weights according to causal spike timing. In preliminary work, we found functional deficits consisting of decreased firing rate and broadband power in areas CA3 and CA1 after STDP impairment. To address structural changes with these studies, we applied modularity analysis to evaluate how STDP impairment modifies community structure in the hippocampal network. We also studied the emergent function of network-based learning and found that impaired networks could acquire conditioned responses after training, but the magnitude of the response was significantly lower. Furthermore, we examined pattern separation, a prerequisite of learning, by entraining two overlapping patterns. Contrary to our initial hypothesis, impaired networks did not exhibit deficits in pattern separation with either population- or rate-based coding. Collectively, these results demonstrate how a mechanism of injury that operates at the synapse regulates circuit function.Author summaryTraumatic brain injury causes diverse symptoms, and memory problems are common among patients. These deficits are associated with the hippocampus, a brain region involved in learning and memory. Neural plasticity supports learning and memory by enabling the circuit to adapt to external stimulus. After brain injury, plasticity can be impaired, perhaps contributing to memory deficits. Yet, this mechanism of injury remains poorly understood. We implemented plasticity impairment and learning in a network model of the hippocampus that is unique because it has a high degree of biological detail in its structure and dynamics compared to other similar computational models. First, we examined the relationship between neurons in the network and characterized how the structure changed with injury. Then we trained the network with two input patterns to test the function of pattern separation, which is the ability to distinguish similar contexts and underpins general learning. We found that the strength of the encoded response decreased after impairment, but the circuit could still distinguish the two input patterns. This work provides insight into which specific aspects of memory become dysfunctional after injury.

Neurotrauma ◽  
2018 ◽  
pp. 111-122
Author(s):  
Elizabeth McNeil ◽  
Zachary Bailey ◽  
Allison Guettler ◽  
Pamela VandeVord

Blast traumatic brain injury (bTBI) is a leading cause of head injury in soldiers returning from the battlefield. Primary blast brain injury remains controversial with little evidence to support a primary mechanism of injury. The four main theories described herein include blast wave transmission through skull orifices, direct cranial transmission, thoracic surge, and skull flexure dynamics. It is possible that these mechanisms do not occur exclusively from each other, but rather that several of them lead to primary blast brain injury. Biomechanical investigation with in-vivo, cadaver, and finite element models would greatly increase our understanding of bTBI mechanisms.


2019 ◽  
Vol 76 (7) ◽  
pp. 471-478 ◽  
Author(s):  
Reema Shafi ◽  
Peter M Smith ◽  
Angela Colantonio

IntroductionWorkplace violence carries a substantial economic loss burden. Up to 10% of all traumatic brain injury (TBI) admissions result from physical assault. There remains a paucity of research on assault as a mechanism of injury, taking into account sex, and its association with work re-entry.ObjectivesThe aim of this study was to characterise, by sex, the sample of workers who had sustained a work-related mild TBI (wr-mTBI) and to assess the independent influence of assault, as a mechanism of injury, on time away from work.MethodsA population-based retrospective cohort of workers’ compensation claimants in Australia (n=3129) who had sustained a wr-mTBI was used for this study. A multivariable logistic regression analysis assessed whether workers who had sustained wr-mTBI as a result of assault (wr-mTBI-assault) were more likely to claim time off work compared with workers who had sustained a wr-mTBI due to other mechanisms.ResultsAmong claimants who sustained a wr-mTBI, 9% were as a result of assault. The distribution of demographic and vocational variables differed between the wr-mTBI-assault, and not due to assault, both in the full sample, and separately for men and women. After controlling for potential confounding factors, workers who sustained wr-mTBI-assault, compared with other mechanisms, were more likely to take days off work (OR 2.14, 95% CI 1.53 to 2.99) within a 3-month timeframe.ConclusionThe results have policy-related implications. Sex-specific and workplace-specific prevention strategies need to be considered and provisions to support return-to-work and well-being within this vulnerable cohort should be examined.


Sign in / Sign up

Export Citation Format

Share Document