secondary injury
Recently Published Documents


TOTAL DOCUMENTS

262
(FIVE YEARS 94)

H-INDEX

35
(FIVE YEARS 4)

Biomedicines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 136
Author(s):  
Noora Puhakka ◽  
Shalini Das Das Gupta ◽  
Niina Vuokila ◽  
Asla Pitkänen

Neuroinflammation is a secondary injury mechanism that evolves in the brain for months after traumatic brain injury (TBI). We hypothesized that an altered small non-coding RNA (sncRNA) signature plays a key role in modulating post-TBI secondary injury and neuroinflammation. At 3threemonths post-TBI, messenger RNA sequencing (seq) and small RNAseq were performed on samples from the ipsilateral thalamus and perilesional cortex of selected rats with a chronic inflammatory endophenotype, and sham-operated controls. The small RNAseq identified dysregulation of 2 and 19 miRNAs in the thalamus and cortex, respectively. The two candidates from the thalamus and the top ten from the cortex were selected for validation. In the thalamus, miR-146a-5p and miR-155-5p levels were upregulated, and in the cortex, miR-375-3p and miR-211-5p levels were upregulated. Analysis of isomiRs of differentially expressed miRNAs identified 3′nucleotide additions that were increased after TBI. Surprisingly, we found fragments originating from 16 and 13 tRNAs in the thalamus and cortex, respectively. We further analyzed two upregulated fragments, 3′tRF-IleAAT and 3′tRF-LysTTT. Increased expression of the full miR-146a profile, and 3′tRF-IleAAT and 3′tRF-LysTTT was associated with a worse behavioral outcome in animals with chronic neuroinflammation. Our results highlight the importance of understanding the regulatory roles of as-yet unknown sncRNAs for developing better strategies to treat TBI and neuroinflammation.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Jamal Alshorman ◽  
Yulong Wang ◽  
Guixiong Huang ◽  
Tracy Boakye Serebour ◽  
Xiaodong Guo

Background. Traumatic spinal cord injury (SCI) can continue and transform long after the time of initial injury. Preventing secondary injury after SCI is one of the most significant challenges, and early intervention to return the blood flow at the injury site can minimize the likelihood of secondary injury. Objective. The purpose of this study is to investigate whether laminectomy can achieve the spinal cord blood flow by measuring the spinal blood oxygen saturation intraoperatively without the presence of light. Methods. Between June and August 2021, eight patients were admitted after traumatic spinal cord injury for surgical treatment. We explored the effectiveness of laminectomy and whether the patients required further procedures or not. We used a brain oxygen saturation monitor at the spine injury site under dark conditions. Results. Eight cervical trauma patients, six males and two females, underwent laminectomy decompression. Three patients’ ASIA grade improved by one level, and one patient showed slight motor-sensory improvement. Oxygen saturation was in the normal range. Conclusion. Performing bony decompression can show good results. Therefore, finding an examination method to confirm the improvement of blood perfusion by measuring oxygen saturation at the injury site after laminectomy is essential to avoid other complications.


2021 ◽  
Vol 22 (23) ◽  
pp. 13106
Author(s):  
Alexander Younsi ◽  
Guoli Zheng ◽  
Lennart Riemann ◽  
Moritz Scherer ◽  
Hao Zhang ◽  
...  

Cervical spinal cord injury (SCI) remains a devastating event without adequate treatment options despite decades of research. In this context, the usefulness of common preclinical SCI models has been criticized. We, therefore, aimed to use a clinically relevant animal model of severe cervical SCI to assess the long-term effects of neural precursor cell (NPC) transplantation on secondary injury processes and functional recovery. To this end, we performed a clip contusion-compression injury at the C6 level in 40 female Wistar rats and a sham surgery in 10 female Wistar rats. NPCs, isolated from the subventricular zone of green fluorescent protein (GFP) expressing transgenic rat embryos, were transplanted ten days after the injury. Functional recovery was assessed weekly, and FluoroGold (FG) retrograde fiber-labeling, as well as manganese-enhanced magnetic resonance imaging (MEMRI), were performed prior to the sacrifice of the animals eight weeks after SCI. After cryosectioning of the spinal cords, immunofluorescence staining was conducted. Results were compared between the treatment groups (NPC, Vehicle, Sham) and statistically analyzed (p < 0.05 was considered significant). Despite the severity of the injury, leading to substantial morbidity and mortality during the experiment, long-term survival of the engrafted NPCs with a predominant differentiation into oligodendrocytes could be observed after eight weeks. While myelination of the injured spinal cord was not significantly improved, NPC treated animals showed a significant increase of intact perilesional motor neurons and preserved spinal tracts compared to untreated Vehicle animals. These findings were associated with enhanced preservation of intact spinal cord tissue. However, reactive astrogliosis and inflammation where not significantly reduced by the NPC-treatment. While differences in the Basso–Beattie–Bresnahan (BBB) score and the Gridwalk test remained insignificant, animals in the NPC group performed significantly better in the more objective CatWalk XT gait analysis, suggesting some beneficial effects of the engrafted NPCs on the functional recovery after severe cervical SCI.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Daniel J. Hellenbrand ◽  
Charles M. Quinn ◽  
Zachariah J. Piper ◽  
Carolyn N. Morehouse ◽  
Jordyn A. Fixel ◽  
...  

AbstractTraumatic spinal cord injury (SCI) is a devastating neurological condition that results in a loss of motor and sensory function. Although extensive research to develop treatments for SCI has been performed, to date, none of these treatments have produced a meaningful amount of functional recovery after injury. The primary injury is caused by the initial trauma to the spinal cord and results in ischemia, oxidative damage, edema, and glutamate excitotoxicity. This process initiates a secondary injury cascade, which starts just a few hours post-injury and may continue for more than 6 months, leading to additional cell death and spinal cord damage. Inflammation after SCI is complex and driven by a diverse set of cells and signaling molecules. In this review, we utilize an extensive literature survey to develop the timeline of local immune cell and cytokine behavior after SCI in rodent models. We discuss the precise functional roles of several key cytokines and their effects on a variety of cell types involved in the secondary injury cascade. Furthermore, variations in the inflammatory response between rats and mice are highlighted. Since current SCI treatment options do not successfully initiate functional recovery or axonal regeneration, identifying the specific mechanisms attributed to secondary injury is critical. With a more thorough understanding of the complex SCI pathophysiology, effective therapeutic targets with realistic timelines for intervention may be established to successfully attenuate secondary damage.


Author(s):  
Yuanzhe Ding ◽  
Di Zhang ◽  
Sheng Wang ◽  
Xiaolei Zhang ◽  
Jingquan Yang

Spinal cord injury (SCI) is a devastating disease leading to loss of sensory and motor functions, whose pathological process includes mechanical primary injury and secondary injury. Macrophages play an important role in SCI pathology. According to its origin, it can be divided into resident microglia and peripheral monocyte-derived macrophages (hematogenous Mφ). And it can also be divided into M1-type macrophages and M2-type macrophages on the basis of its functional characteristics. Hematogenous macrophages may contribute to the SCI process through infiltrating, scar forming, phagocytizing debris, and inducing inflammatory response. Although some of the activities of hematogenous macrophages are shown to be beneficial, the role of hematogenous macrophages in SCI remains controversial. In this review, following a brief introduction of hematogenous macrophages, we mainly focus on the function and the controversial role of hematogenous macrophages in SCI, and we propose that hematogenous macrophages may be a new therapeutic target for SCI.


2021 ◽  
pp. 000313482110516
Author(s):  
Navpreet K. Dhillon ◽  
Yassar M. Hashim ◽  
Geena Conde ◽  
George Phillips ◽  
Nicole M Fierro ◽  
...  

Background Traumatic brain injury (TBI) results in an elaborate systemic cascade of secondary injury elicited in part by an intrinsic catecholamine response, which ultimately leads to changes in inflammation and coagulopathy. Attenuation of this catecholamine response with agents such as propranolol confers a survival advantage. The related impact of propranolol on venous thromboembolism (VTE) after TBI is largely unknown. Study Design A single institution retrospective review was conducted of all TBI patients requiring intensive care unit (ICU) admission with an injury severity scale (ISS) ≥ 25 from January 2013 to May 2015. Patients who received at least one dose of propranolol within 24 hours of admission (PROP) were compared to patients who did not receive any doses of propranolol (NPROP) during their hospitalization. Results Of the 131 patients analyzed, 31 (23.7%) patients received propranolol. The PROP cohort was more severely injured overall (ISS 29 vs 26.5, P = .02). While unadjusted VTE rates were similar (16.1% vs 19.0%, P = .72), the adjusted VTE rate was lower in the PROP cohort (AOR 0.20 (95% CI 0.04-0.97), adjusted P-value < .05). Conclusion Propranolol use in TBI patients who have sustained critical injuries may mitigate the risk of VTE. The mechanism by which this outcome is achieved requires further investigation.


2021 ◽  
Vol 14 ◽  
Author(s):  
Olivia J. Kalimon ◽  
Patrick G. Sullivan

Traumatic brain injury (TBI) is a complex disease to study due to the multifactorial injury cascades occurring after the initial blow to the head. One of the most vital players in this secondary injury cascade, and therapeutic target of interest, is the mitochondrion. Mitochondria are important for the generation of cellular energy, regulation of cell death, and modulation of intracellular calcium which leaves these “powerhouses” especially susceptible to damage and dysfunction following traumatic brain injury. Most of the existing studies involving mitochondrial dysfunction after TBI have been performed in male rodent models, leaving a gap in knowledge on these same outcomes in females. This mini-review intends to highlight the available data on mitochondrial dysfunction in male and female rodents after controlled cortical impact (CCI) as a common model of TBI.


2021 ◽  
Vol 142 ◽  
pp. 112079
Author(s):  
Lori M. Buhlman ◽  
Gokul Krishna ◽  
T. Bucky Jones ◽  
Theresa Currier Thomas

2021 ◽  
pp. 174561
Author(s):  
Yitian Li ◽  
Pan Zhou ◽  
Ting Hu ◽  
Jie Ren ◽  
Yaping Xu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document