scholarly journals One Shot Model For The Prediction of COVID-19 and Lesions Segmentation In Chest CT Scans Through The Affinity Among Lesion Mask Features

Author(s):  
Aram Ter-Sarkisov

AbstractWe introduce a model that segments lesions and predicts COVID-19 from chest CT scans through the derivation of an affinity matrix between lesion masks. The novelty of the methodology is based on the computation of the affinity between the lesion masks’ features extracted from the image. First, a batch of vectorized lesion masks is constructed. Then, the model learns the parameters of the affinity matrix that captures the relationship between features in each vector. Finally, the affinity is expressed as a single vector of pre-defined length. Without any complicated data manipulation, class balancing tricks, and using only a fraction of the training data, we achieve a 91.74% COVID-19 sensitivity, 85.35% common pneumonia sensitivity, 97.26% true negative rate and 91.94% F1-score. Ablation studies show that the method can quickly generalize to new datasets. All source code, models and results are publicly available on https://github.com/AlexTS1980/COVID-Affinity-Model.

Author(s):  
Aram Ter-Sarkisov

In this paper we compare the models for the detection and segmentation of Ground Glass Opacity and Consolidation in chest CT scans. These lesion areas are often associated both with common pneumonia and COVID-19. We train a Mask R-CNN model to segment these areas with high accuracy using three approaches: merging masks for these lesions into one, deleting the mask for Consolidation, and using both masks separately. The best model achieves the mean average precision of 44.68% using MS COCO criterion for instance segmentation across all accuracy thresholds. The classification model, COVID-CT-Mask-Net, which learns to predict the presence of COVID-19 vs common pneumonia vs control, achieves the 93.88% COVID-19 sensitivity, 95.64% overall accuracy, 95.06% common pneumonia sensitivity and 96.91% true negative rate on the COVIDx-CT test split (21192 CT scans) using a small fraction of the training data. We also analyze the effect of Non-Maximum Suppression of overlapping object predictions, both on the segmentation and classification accuracy. The full source code, models and pretrained weights are available on https://github.com/AlexTS1980/COVID-CT-Mask-Net.


2020 ◽  
Author(s):  
Aram Ter-Sarkisov

Abstract In this paper we compare the models for the detection and segmentation of Ground Glass Opacity and Consolidation in chest CT scans. These lesion areas are often associated both with common pneumonia and COVID-19. We train a Mask R-CNN model to segment these areas with high accuracy using three approaches: merging masks for these lesions into one, deleting the mask for Consolidation, and using both masks separately. The best model achieves the mean average precision of 44.68% using MS COCO criterion for instance segmentation across all accuracy thresholds. The classification model, COVID-CT-Mask-Net, which learns to predict the presence of COVID-19 vs common pneumonia vs control, achieves the 93.88% COVID-19 sensitivity, 95.64% overall accuracy, 95.06% common pneumonia sensitivity and 96.91% true negative rate on the COVIDx-CT test split (21192 CT scans) using a small fraction of the training data. We also analyze the effect of Non-Maximum Suppression of overlapping object predictions, both on the segmentation and classification accuracy. The full source code, models and pretrained weights are available on https://github.com/AlexTS1980/COVID-CT-Mask-Net.


2020 ◽  
Author(s):  
Aram Ter-Sarkisov

Abstract In this paper we compare the models for the detection and segmentation of Ground Glass Opacity and Consolidation in chest CT scans. These lesion areas are often associated both with common pneumonia and COVID-19. We train a Mask R-CNN model to segment these areas with high accuracy using three approaches: merging masks for these lesions into one, deleting the mask for Consolidation, and using both masks separately. The best model achieves the mean average precision of 44.68% using MS COCO criterion for instance segmentation across all accuracy thresholds. The classification model, COVID-CT-Mask-Net, which learns to predict the presence of COVID-19 vs common pneumonia vs control, achieves the 93.88% COVID-19 sensitivity, 95.64% overall accuracy, 95.06% common pneumonia sensitivity and 96.91% true negative rate on the COVIDx-CT test split (21192 CT scans) using a small fraction of the training data. We also analyze the effect of Non-Maximum Suppression of overlapping object predictions, both on the segmentation and classification accuracy. The full source code, models and pretrained weights are available on https://github.com/AlexTS1980/COVID-CT-Mask-Net.


2020 ◽  
Author(s):  
Aram Ter-Sarkisov

Abstract We introduce a lightweight Mask R-CNN model that segments areas with the Ground Glass Opacity and Consolidation in chest CT scans. The model uses truncated ResNet18 and ResNet34 nets with a single layer of Feature Pyramid Network as a backbone net, thus substantially reducing the number of the parameters and the training time compared to similar solutions using deeper networks. Without any data balancing and manipulations, and using only a small fraction of the training data, COVID-CT-Mask-Net classification model with 6.12M total and 600K trainable parameters derived from Mask R-CNN, achieves 91.35% COVID-19 sensitivity, 91.63% Common Pneumonia sensitivity, 96.98% true negative rate and 93.95% overall accuracy on COVIDx-CT dataset (21191 images). We also present a thorough analysis of the regional features critical to the correct classification of the image. The full source code, models and pretrained weights are available on https://github.com/AlexTS1980/COVID-CT-Mask-Net.


2020 ◽  
Author(s):  
Aram Ter-Sarkisov

Abstract We introduce a lightweight Mask R-CNN model that segments areas with the Ground Glass Opacity and Consolidation in chest CT scans. The model uses truncated ResNet18 and ResNet34 nets with a single layer of Feature Pyramid Network as a backbone net, thus substantially reducing the number of the parameters and the training time compared to similar solutions using deeper networks. Without any data balancing and manipulations, and using only a small fraction of the training data, COVID-CT-Mask-Net classification model with 6.12M total and 600K trainable parameters derived from Mask R-CNN, achieves 91.35% COVID-19 sensitivity, 91.63% Common Pneumonia sensitivity, 96.98% true negative rate and 93.95% overall accuracy on COVIDx-CT dataset (21191 images). We also present a thorough analysis of the regional features critical to the correct classification of the image. The full source code, models and pretrained weights are available on https://github.com/AlexTS1980/COVID-CT-Mask-Net.


Author(s):  
Aram Ter-Sarkisov

AbstractWe introduce a lightweight Mask R-CNN model that segments areas with the Ground Glass Opacity and Consolidation in chest CT scans. The model uses truncated ResNet18 and ResNet34 nets with a single layer of Feature Pyramid Network as a backbone net, thus substantially reducing the number of the parameters and the training time compared to similar solutions using deeper networks. Without any data balancing and manipulations, and using only a small fraction of the training data, COVID-CT-Mask-Net classification model with 6.12M total and 600K trainable parameters derived from Mask R-CNN, achieves 91.35% COVID-19 sensitivity, 91.63% Common Pneumonia sensitivity, 96.98% true negative rate and 93.95% overall accuracy on COVIDx-CT dataset (21191 images). We also present a thorough analysis of the regional features critical to the correct classification of the image. The full source code, models and pretrained weights are available on https://github.com/AlexTS1980/COVID-CT-Mask-Net.


2020 ◽  
Author(s):  
Aram Ter-Sarkisov

Abstract We introduce a lightweight model based on Mask R-CNN with ResNet18 and ResNet34 backbone models that segments lesions and predicts COVID-19 from chest CT scans in a single shot. The model requires a small dataset to train: 650 images for the segmentation branch and 3000 for the classification branch, and it is evaluated on 21292 images to achieve a 42.45% average precision (main MS COCO criterion) on the segmentation test split (100 images), 93.00% COVID-19 sensitivity and F1-score of 96.76% on the classification test split (21192 images) across 3 classes: COVID-19, Common Pneumonia and Control/Negative. The full source code, models and pretrained weights are available on https://github.com/AlexTS1980/COVID-Single-Shot-Model.


2020 ◽  
Author(s):  
Youzhen Feng ◽  
Sidong Liu ◽  
Zhongyuan Cheng ◽  
Juan Quiroz ◽  
Data Rezazadegan ◽  
...  

Automatic severity assessment and progression prediction can facilitate admission, triage, and referral of COVID-19 patients. This study aims to explore the potential use of lung lesion features in the management of COVID-19, based on the assumption that lesion features may carry important diagnostic and prognostic information for quantifying infection severity and forecasting disease progression. A novel LesionEncoder framework is proposed to detect lesions in chest CT scans and to encode lesion features for automatic severity assessment and progression prediction. The LesionEncoder framework consists of a U-Net module for detecting lesions and extracting features from individual CT slices, and a recurrent neural network (RNN) module for learning the relationship between feature vectors and collectively classifying the sequence of feature vectors. Chest CT scans of two cohorts of COVID-19 patients from two hospitals in China were used for training and testing the proposed framework. When applied to assessing severity, this framework outperformed baseline methods achieving a sensitivity of 0.818, specificity of 0.952, accuracy of 0.940, and AUC of 0.903. It also outperformed the other tested methods in disease progression prediction with a sensitivity of 0.667, specificity of 0.838, accuracy of 0.829, and AUC of 0.736. The LesionEncoder framework demonstrates a strong potential for clinical application in current COVID-19 management, particularly in automatic severity assessment of COVID-19 patients. This framework also has a potential for other lesion-focused medical image analyses. [Manuscript last updated on 20 May, 2020.]


Information ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 471
Author(s):  
You-Zhen Feng ◽  
Sidong Liu ◽  
Zhong-Yuan Cheng ◽  
Juan C. Quiroz ◽  
Dana Rezazadegan ◽  
...  

Automatic severity assessment and progression prediction can facilitate admission, triage, and referral of COVID-19 patients. This study aims to explore the potential use of lung lesion features in the management of COVID-19, based on the assumption that lesion features may carry important diagnostic and prognostic information for quantifying infection severity and forecasting disease progression. A novel LesionEncoder framework is proposed to detect lesions in chest CT scans and to encode lesion features for automatic severity assessment and progression prediction. The LesionEncoder framework consists of a U-Net module for detecting lesions and extracting features from individual CT slices, and a recurrent neural network (RNN) module for learning the relationship between feature vectors and collectively classifying the sequence of feature vectors. Chest CT scans of two cohorts of COVID-19 patients from two hospitals in China were used for training and testing the proposed framework. When applied to assessing severity, this framework outperformed baseline methods achieving a sensitivity of 0.818, specificity of 0.952, accuracy of 0.940, and AUC of 0.903. It also outperformed the other tested methods in disease progression prediction with a sensitivity of 0.667, specificity of 0.838, accuracy of 0.829, and AUC of 0.736. The LesionEncoder framework demonstrates a strong potential for clinical application in current COVID-19 management, particularly in automatic severity assessment of COVID-19 patients. This framework also has a potential for other lesion-focused medical image analyses.


2020 ◽  
Author(s):  
Aram Ter-Sarkisov

AbstractWe introduce a lightweight model based on Mask R-CNN with ResNet18 and ResNet34 backbone models that segments lesions and predicts COVID-19 from chest CT scans in a single shot. The model requires a small dataset to train: 650 images for the segmentation branch and 3000 for the classification branch, and it is evaluated on 21292 images to achieve a 42.45% average precision (main MS COCO criterion) on the segmentation test split (100 images), 93.00% COVID-19 sensitivity and F1-score of 96.76% on the classification test split (21192 images) across 3 classes: COVID-19, Common Pneumonia and Control/Negative. The full source code, models and pretrained weights are available on https://github.com/AlexTS1980/COVID-Single-Shot-Model.


Sign in / Sign up

Export Citation Format

Share Document