scholarly journals Sterically-Confined Rearrangements of SARS-CoV-2 Spike Protein Control Cell Invasion

2021 ◽  
Author(s):  
Esteban Dodero-Rojas ◽  
José N. Onuchic ◽  
Paul C. Whitford

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is highly contagious, and transmission involves a series of processes that may be targeted by vaccines and therapeutics. During transmission, host cell invasion is controlled by a large-scale conformational change of the Spike protein. This conformational rearrangement leads to membrane fusion, which creates transmembrane pores through which the viral genome is passed to the host. During Spike-protein-mediated fusion, the fusion peptides must be released from the core of the protein and associate with the host membrane. Interestingly, the Spike protein possesses many post-translational modifications, in the form of branched glycans that flank the surface of the assembly. Despite the large number of glycosylation sites, until now, the specific role of glycans during cell invasion has been unclear. Here, we propose that glycosylation is needed to provide sufficient time for the fusion peptides to reach the host membrane, otherwise the viral particle would fail to enter the host. To understand this process, an all-atom model with simplified energetics was used to perform thousands of simulations in which the protein transitions between the prefusion and postfusion conformations. These simulations indicate that the steric composition of the glycans induces a pause during the Spike protein conformational change. We additionally show that this glycan-induced delay provides a critical opportunity for the fusion peptides to capture the host cell. This previously-unrecognized role of glycans reveals how the glycosylation state can regulate infectivity of this pervasive pathogen.

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Esteban Dodero-Rojas ◽  
Jose N Onuchic ◽  
Paul Charles Whitford

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is highly contagious, and transmission involves a series of processes that may be targeted by vaccines and therapeutics. During transmission, host cell invasion is controlled by a large-scale (200–300 Å) conformational change of the Spike protein. This conformational rearrangement leads to membrane fusion, which creates transmembrane pores through which the viral genome is passed to the host. During Spike-protein-mediated fusion, the fusion peptides must be released from the core of the protein and associate with the host membrane. While infection relies on this transition between the prefusion and postfusion conformations, there has yet to be a biophysical characterization reported for this rearrangement. That is, structures are available for the endpoints, though the intermediate conformational processes have not been described. Interestingly, the Spike protein possesses many post-translational modifications, in the form of branched glycans that flank the surface of the assembly. With the current lack of data on the pre-to-post transition, the precise role of glycans during cell invasion has also remained unclear. To provide an initial mechanistic description of the pre-to-post rearrangement, an all-atom model with simplified energetics was used to perform thousands of simulations in which the protein transitions between the prefusion and postfusion conformations. These simulations indicate that the steric composition of the glycans can induce a pause during the Spike protein conformational change. We additionally show that this glycan-induced delay provides a critical opportunity for the fusion peptides to capture the host cell. In contrast, in the absence of glycans, the viral particle would likely fail to enter the host. This analysis reveals how the glycosylation state can regulate infectivity, while providing a much-needed structural framework for studying the dynamics of this pervasive pathogen.


2000 ◽  
Vol 46 (7) ◽  
pp. 660-668 ◽  
Author(s):  
Rafael A. Garduño ◽  
Anne R. Moore ◽  
Gilles Olivier ◽  
Angela L. Lizama ◽  
Elizabeth Garduño ◽  
...  

2015 ◽  
Vol 290 (12) ◽  
pp. 7767-7790 ◽  
Author(s):  
Brian S. Mantilla ◽  
Lisvane S. Paes ◽  
Elizabeth M. F. Pral ◽  
Daiana E. Martil ◽  
Otavio H. Thiemann ◽  
...  

2015 ◽  
Vol 6 (1) ◽  
Author(s):  
Raphael Böhm ◽  
Fiona E. Fleming ◽  
Andrea Maggioni ◽  
Vi T. Dang ◽  
Gavan Holloway ◽  
...  

2017 ◽  
Vol 2 ◽  
pp. 32 ◽  
Author(s):  
Simon Gras ◽  
Allison Jackson ◽  
Stuart Woods ◽  
Gurman Pall ◽  
Jamie Whitelaw ◽  
...  

Background: Micronemal proteins of the thrombospondin-related anonymous protein (TRAP) family are believed to play essential roles during gliding motility and host cell invasion by apicomplexan parasites, and currently represent major vaccine candidates against Plasmodium falciparum, the causative agent of malaria. However, recent evidence suggests that they play multiple and different roles than previously assumed. Here, we analyse a null mutant for MIC2, the TRAP homolog in Toxoplasma gondii. Methods: We performed a careful analysis of parasite motility in a 3D-environment, attachment under shear stress conditions, host cell invasion and in vivo virulence. Results: We verified the role of MIC2 in efficient surface attachment, but were unable to identify any direct function of MIC2 in sustaining gliding motility or host cell invasion once initiated. Furthermore, we find that deletion of mic2 causes a slightly delayed infection in vivo, leading only to mild attenuation of virulence; like with wildtype parasites, inoculation with even low numbers of mic2 KO parasites causes lethal disease in mice. However, deletion of mic2 causes delayed host cell egress in vitro, possibly via disrupted signal transduction pathways. Conclusions: We confirm a critical role of MIC2 in parasite attachment to the surface, leading to reduced parasite motility and host cell invasion. However, MIC2 appears to not be critical for gliding motility or host cell invasion, since parasite speed during these processes is unaffected. Furthermore, deletion of MIC2 leads only to slight attenuation of the parasite.


2017 ◽  
Vol 2 ◽  
pp. 32 ◽  
Author(s):  
Simon Gras ◽  
Allison Jackson ◽  
Stuart Woods ◽  
Gurman Pall ◽  
Jamie Whitelaw ◽  
...  

Background: Micronemal proteins of the thrombospondin-related anonymous protein (TRAP) family are believed to play essential roles during gliding motility and host cell invasion by apicomplexan parasites, and currently represent major vaccine candidates against Plasmodium falciparum, the causative agent of malaria. However, recent evidence suggests that they play multiple and different roles than previously assumed. Here, we analyse a null mutant for MIC2, the TRAP homolog in Toxoplasma gondii. Methods: We performed a careful analysis of parasite motility in a 3D-environment, attachment under shear stress conditions, host cell invasion and in vivo virulence. Results: We verified the role of MIC2 in efficient surface attachment, but were unable to identify any direct function of MIC2 in sustaining gliding motility or host cell invasion once initiated. Furthermore, we find that deletion of mic2 causes a slightly delayed infection in vivo, leading only to mild attenuation of virulence; like with wildtype parasites, inoculation with even low numbers of mic2 KO parasites causes lethal disease in mice. However, deletion of mic2 causes delayed host cell egress in vitro, possibly via disrupted signal transduction pathways. Conclusions: We confirm a critical role of MIC2 in parasite attachment to the surface, leading to reduced parasite motility and host cell invasion. However, MIC2 appears to not be critical for gliding motility or host cell invasion, since parasite speed during these processes is unaffected. Furthermore, deletion of MIC2 leads only to slight attenuation of the parasite.


Sign in / Sign up

Export Citation Format

Share Document