scholarly journals Identification of novel inner membrane complex and apical annuli proteins of the malaria parasite Plasmodium falciparum

2021 ◽  
Author(s):  
Jan Stephan Wichers ◽  
Juliane Wunderlich ◽  
Dorothee Heincke ◽  
Samuel Pazicky ◽  
Jan Strauss ◽  
...  

ABSTRACTThe inner membrane complex (IMC) is a defining feature of apicomplexan parasites, which confers stability and shape to the cell, functions as a scaffolding compartment during the formation of daughter cells and plays an important role in motility and invasion during different life cycle stages of these single celled organisms. To explore the IMC proteome of the malaria parasite Plasmodium falciparum we applied a proximity-dependent biotin identification (BioID)-based proteomics approach, using the established IMC marker protein Photosensitized INA-Labelled protein 1 (PhIL1) as bait in asexual blood-stage parasites. Subsequent mass spectrometry-based peptide identification revealed enrichment of twelve known IMC proteins and several uncharacterized candidate proteins. We validated nine of these previously uncharacterized proteins by endogenous GFP-tagging. Six of these represent new IMC proteins, while three proteins have a distinct apical localization that most likely represent structures described as apical annuli in Toxoplasma gondii. Additionally, various Kelch13 interacting candidates were identified, suggesting an association of the Kelch13 compartment and the IMC in schizont and merozoite stages. This work extends the number of validated IMC proteins in the malaria parasite and reveals for the first time the existence of apical annuli proteins in P. falciparum. Additionally, it provides evidence for a spatial association between the Kelch13 compartment and the IMC in late blood-stage parasites.

2012 ◽  
Vol 178 (1) ◽  
pp. 61-73 ◽  
Author(s):  
Jürgen Bosch ◽  
Matthew H. Paige ◽  
Akhil B. Vaidya ◽  
Lawrence W. Bergman ◽  
Wim G.J. Hol

2012 ◽  
Vol 125 (8) ◽  
pp. 2053-2063 ◽  
Author(s):  
M. K. Dearnley ◽  
J. A. Yeoman ◽  
E. Hanssen ◽  
S. Kenny ◽  
L. Turnbull ◽  
...  

2014 ◽  
Vol 290 (3) ◽  
pp. 1712-1728 ◽  
Author(s):  
Johanna Wetzel ◽  
Susann Herrmann ◽  
Lakshmipuram Seshadri Swapna ◽  
Dhaneswar Prusty ◽  
Arun T. John Peter ◽  
...  

2011 ◽  
Vol 10 (4) ◽  
pp. 556-564 ◽  
Author(s):  
Jeffrey A. Yeoman ◽  
Eric Hanssen ◽  
Alexander G. Maier ◽  
Nectarios Klonis ◽  
Bohumil Maco ◽  
...  

ABSTRACT The most deadly of the human malaria parasites, Plasmodium falciparum , has different stages specialized for invasion of hepatocytes, erythrocytes, and the mosquito gut wall. In each case, host cell invasion is powered by an actin-myosin motor complex that is linked to an inner membrane complex (IMC) via a membrane anchor called the glideosome-associated protein 50 (PfGAP50). We generated P. falciparum transfectants expressing green fluorescent protein (GFP) chimeras of PfGAP50 (PfGAP50-GFP). Using immunoprecipitation and fluorescence photobleaching, we show that C-terminally tagged PfGAP50-GFP can form a complex with endogenous copies of the linker protein PfGAP45 and the myosin A tail domain-interacting protein (MTIP). Full-length PfGAP50-GFP is located in the endoplasmic reticulum in early-stage parasites and then redistributes to apical caps during the formation of daughter merozoites. In the final stage of schizogony, the PfGAP50-GFP profile extends further around the merozoite surface. Three-dimensional (3D) structured illumination microscopy reveals the early-stage IMC as a doubly punctured flat ellipsoid that separates to form claw-shaped apposed structures. A GFP fusion of PfGAP50 lacking the C-terminal membrane anchor is misdirected to the parasitophorous vacuole. Replacement of the acid phosphatase homology domain of PfGAP50 with GFP appears to allow correct trafficking of the chimera but confers a growth disadvantage.


2019 ◽  
Author(s):  
Ansgar Flammersfeld ◽  
Atscharah Panyot ◽  
Yoshiki Yamaryo ◽  
Philipp Auraß ◽  
Jude M. Pryborski ◽  
...  

AbstractPatatin-like phospholipases (PNPLAs) are highly conserved enzymes of prokaryotic and eukaryotic organisms with major roles in lipid homeostasis. The genome of the malaria parasite Plasmodium falciparum encodes four putative PNPLAs with predicted functions during phospholipid degradation. We here investigated the role of one of the plasmodial PNPLAs, a putative PLA2 termed PNPLA1, during blood stage replication and gametocyte development. PNPLA1 is present in the asexual and sexual blood stages and here localizes to the cytoplasm. PNPLA1-deficiency due to gene disruption or conditional gene-knockdown had no effect on erythrocytic replication, gametocyte maturation and gametogenesis. However, blood stage parasites lacking PNPLA1 were severely impaired in gametocyte induction, while PNPLA1 overexpression promotes gametocyte formation. The loss of PNPLA1 further leads to transcriptional down-regulation of genes related to gametocytogenesis, including the gene encoding the sexual commitment regulator AP2-G. Additionally, lipidomics of PNPLA1-deficient asexual blood stage parasites revealed overall increased levels of major phospholipids, including phosphatidylcholine (PC), which is a substrate of PLA2. Because PC synthesis is pivotal for erythrocytic replication, while the reduced availability of PC precursors drives the parasite into gametocytogenesis, we hypothesize that the high PC levels due to PNPLA1-deficiency prevent the blood stage parasites from entering the sexual pathway.


2021 ◽  
Vol 17 (7) ◽  
pp. e1009750
Author(s):  
Ekta Saini ◽  
Pradeep Kumar Sheokand ◽  
Vaibhav Sharma ◽  
Prakhar Agrawal ◽  
Inderjeet Kaur ◽  
...  

The human malaria parasite, Plasmodium falciparum possesses unique gliding machinery referred to as the glideosome that powers its entry into the insect and vertebrate hosts. Several parasite proteins including Photosensitized INA-labelled protein 1 (PhIL1) have been shown to associate with glideosome machinery. Here we describe a novel PhIL1 associated protein complex that co-exists with the glideosome motor complex in the inner membrane complex of the merozoite. Using an experimental genetics approach, we characterized the role(s) of three proteins associated with PhIL1: a glideosome associated protein- PfGAPM2, an IMC structural protein- PfALV5, and an uncharacterized protein—referred here as PfPhIP (PhIL1 Interacting Protein). Parasites lacking PfPhIP or PfGAPM2 were unable to invade host RBCs. Additionally, the downregulation of PfPhIP resulted in significant defects in merozoite segmentation. Furthermore, the PfPhIP and PfGAPM2 depleted parasites showed abrogation of reorientation/gliding. However, initial attachment with host RBCs was not affected in these parasites. Together, the data presented here show that proteins of the PhIL1-associated complex play an important role in the orientation of P. falciparum merozoites following initial attachment, which is crucial for the formation of a tight junction and hence invasion of host erythrocytes.


2012 ◽  
Vol 29 (9) ◽  
pp. 2113-2132 ◽  
Author(s):  
M. Kono ◽  
S. Herrmann ◽  
N. B. Loughran ◽  
A. Cabrera ◽  
K. Engelberg ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document