scholarly journals S-acylation controls SARS-Cov-2 membrane lipid organization and enhances infectivity

2021 ◽  
Author(s):  
Francisco Sarmento Mesquita ◽  
Laurence Abrami ◽  
Oksana Sergeeva ◽  
Priscilla Turelli ◽  
Beatrice Kunz ◽  
...  

SARS-CoV-2 virions are surrounded by a lipid bilayer which contains membrane proteins such as Spike, responsible for target-cell binding and virus fusion, the envelope protein E and the accessory protein Orf3a. Here, we show that during SARS-CoV-2 infection, all three proteins become lipid modified, through action of the S- acyltransferase ZDHHC20. Particularly striking is the rapid acylation of Spike on 10 cytosolic cysteines within the ER and Golgi. Using a combination of computational, lipidomics and biochemical approaches, we show that this massive lipidation controls Spike biogenesis and degradation, and drives the formation of localized ordered cholesterol and sphingolipid rich lipid nanodomains, in the early Golgi where viral budding occurs. ZDHHC20-mediated acylation allows the formation of viruses with enhanced fusion capacity and overall infectivity. Our study points towards S-acylating enzymes and lipid biosynthesis enzymes as novel therapeutic anti-viral targets.

2015 ◽  
Vol 112 (29) ◽  
pp. 9016-9021 ◽  
Author(s):  
Sara Capponi ◽  
Matthias Heyden ◽  
Ana-Nicoleta Bondar ◽  
Douglas J. Tobias ◽  
Stephen H. White

The heterotrimeric SecY translocon complex is required for the cotranslational assembly of membrane proteins in bacteria and archaea. The insertion of transmembrane (TM) segments during nascent-chain passage through the translocon is generally viewed as a simple partitioning process between the water-filled translocon and membrane lipid bilayer, suggesting that partitioning is driven by the hydrophobic effect. Indeed, the apparent free energy of partitioning of unnatural aliphatic amino acids on TM segments is proportional to accessible surface area, which is a hallmark of the hydrophobic effect [Öjemalm K, et al. (2011) Proc Natl Acad Sci USA 108(31):E359–E364]. However, the apparent partitioning solvation parameter is less than one-half the value expected for simple bulk partitioning, suggesting that the water in the translocon departs from bulk behavior. To examine the state of water in a SecY translocon complex embedded in a lipid bilayer, we carried out all-atom molecular-dynamics simulations of the Pyrococcus furiosus SecYE, which was determined to be in a “primed” open state [Egea PF, Stroud RM (2010) Proc Natl Acad Sci USA 107(40):17182–17187]. Remarkably, SecYE remained in this state throughout our 450-ns simulation. Water molecules within SecY exhibited anomalous diffusion, had highly retarded rotational dynamics, and aligned their dipoles along the SecY transmembrane axis. The translocon is therefore not a simple water-filled pore, which raises the question of how anomalous water behavior affects the mechanism of translocon function and, more generally, the partitioning of hydrophobic molecules. Because large water-filled cavities are found in many membrane proteins, our findings may have broader implications.


Hematology ◽  
2007 ◽  
Vol 2007 (1) ◽  
pp. 68-73 ◽  
Author(s):  
Frans A. Kuypers

Abstract The red blood cell (RBC) membrane is a complex mixture of lipids and proteins. Hundreds of phospholipid molecular species spontaneously arrange themselves in a lipid bilayer and move rapidly in the plane as well as across the bilayer in a dynamic but highly organized fashion. Areas enriched in certain lipids determine proper protein function. Phospholipids are asymmetrically distributed across the lipid bilayer with phosphatidylserine (PS) exclusively on the inside. Both the composition and organization of the RBC membrane is well maintained. Alterations lead to apoptosis during erythropoiesis or early demise of the cell in the circulation. The mechanisms that govern the maintenance of the lipid bilayer are only recently being unraveled at the individual protein level. Oxidized lipids are rapidly repaired using fatty acids taken up from plasma to maintain membrane integrity. Several isoforms of a RBC acyl-Coenzyme A (CoA) synthase have been reported, as well as the first member of a family of lysophospholipid acylCoA acyltransferases. Phospholipid asymmetry is maintained by the recently identified RBC amino-phospholipid translocase. These enzymes, essential in maintaining membrane lipid organization, are affected by oxidant stress or an increase in cytosolic calcium. Normal lipid composition and organization is lost in subpopulations of RBC in hemoglobinopathies such as sickle cell disease and thalassemia. Despite elaborate antioxidant systems, lipids and membrane proteins, including those that maintain lipid organization, are damaged in these cells. This in turn leads to improper repair of damaged RBC membranes and altered interactions of RBCs with other blood cells and plasma components that play a role in the pathology that defines these disorders. The altered lipid bilayer in RBCs in hemoglobinopathies leads to premature removal (anemia) and imbalance in hemostasis, and plays a role in vaso-occlusive crisis in sickle cell disease. Lipid breakdown products of PS-exposing cells result in vascular dysfunction, including acute chest syndrome in sickle cell disease. In summary, altered membrane lipids play an important role in the pathology of hemoglobinopathies and characterization of the proteins involved in lipid turnover will elucidate the pathways that maintain plasma membrane organization and cellular viability.


1996 ◽  
Vol 75 (01) ◽  
pp. 147-153 ◽  
Author(s):  
Cezary Watala ◽  
Krzysztof Gwoździński ◽  
Elżbieta Pluskota ◽  
Tadeusz Pietrucha ◽  
Bogdan Walkowiak ◽  
...  

SummaryThe increased nonenzymatic glycosylation of platelet membrane proteins has been suggested to underlie platelet hypersensitivity in diabetes and the relationship of this to the reduced membrane lipid fluidity has been reported. As the modulation in membrane fluidity may determine the degree of accessibility of membrane receptors, the consequent alterations in membrane lipid-protein interactions in diabetes mellitus may also underlie the differentiated effects of various thrombotic and fibrinolytic agents on platelet membrane lipid bilayer.In the present study we employed electron paramagnetic resonance and fluorescence spectroscopy to explore the ligand-induced platelet membrane fluidity changes in diabetic state, i.e. under conditions when the membrane architecture is considerably altered.The yield of the excimer formation of pyrenemaleimide (PM), which depends directly upon the collisional rate and distances between molecules, was elevated in diabetic platelet membranes, thus pointing to the occurrence of some constraints in the structure/conformation of platelet membrane proteins in diabetes mellitus. Such an immobilization of PM was accompanied by the significant elevation in membrane protein gly-cation in diabetic platelets. The effects of various interacting ligands on platelet membrane fluidity were significantly lower in diabetic platelets, and the differences were much more distinct at the lower depths of a lipid bilayer. Nevertheless, the alterations in membrane lipid fluidity observed upon the interaction of a given ligand occurred with an approximately equal frequency in control and diabetic platelets. Moreover, the probability that these alterations were less profound in diabetic platelets was the same for all types of ligands studied. In diabetic patients the interaction of RGDS and tissue-type plasminogen activator with platelet membranes resulted in much smaller reductions of the h+1/h0 parameters in 5-DOXYL-Ste acid-labelled platelets, thus indicating a lesser rigidization of membrane lipid bilayer in diabetes. Likewise, the fluidizing effect of both fibrinogen itself and fibrinogen-derived peptides containing γ-chain carboxy-terminal sequence H-12-V was less pronounced in diabetic platelet membranes.


1998 ◽  
Vol 335 (3) ◽  
pp. 597-604 ◽  
Author(s):  
Natasha MEREZHINSKAYA ◽  
Gemma A. J. KUIJPERS ◽  
Yossef RAVIV

Fluorescent lipid analogue 3,3´-dioctadecyloxacarbocyanine incorporated into biological membranes was used to induce photoactivation of a hydrophobic probe 5-[125I]iodonaphthyl-1-azide (125INA) by energy transfer and to thereby confine subsequent radiolabelling of proteins to the lipid bilayer. This approach was applied in bovine chromaffin cells to discover cytosolic proteins that reversibly penetrate into membrane domains. α-Glutathione S-transferase (α-GST) was identified as the only labelled protein in bovine chromaffin-cell cytosol, indicating that it inserts reversibly into the membrane lipid bilayer. The selectivity of the labelling towards the lipid bilayer is demonstrated by showing that influenza virus haemagglutinin becomes labelled by 125INA only after the insertion of this protein into the target membrane. The molar 125INA:protein ratio was used as a quantitative criterion for evaluation of the penetration of proteins into the membrane lipid bilayer. This ratio was calculated for four integral membrane proteins and four soluble proteins that interact with biological membranes. The values for four integral membrane proteins (erythrocyte anion transporter, multidrug transporter gp-170, dopamine transporter and fusion-competent influenza virus haemagglutinin) were 1, 8, 2 and 2, respectively, whereas for soluble proteins (annexin VII, protein kinase C, BSA and influenza virus haemagglutinin) the values were 0.002, 0, 0.002 and 0.02, respectively. The molar ratio for α-GST was found to be 1, compatible with the values obtained for integral membrane proteins.


2021 ◽  
Vol 120 (3) ◽  
pp. 232a
Author(s):  
Hannah M. Visca ◽  
Oleg A. Andreev ◽  
Yana K. Reshetnyak

1986 ◽  
Vol 126 (3) ◽  
pp. 379-388 ◽  
Author(s):  
Brian J. Del Buono ◽  
Patrick L. Williamson ◽  
Robert A. Schlegel

2021 ◽  
Author(s):  
Yusuke Shimizu ◽  
Kohei Sato ◽  
Kazushi Kinbara

Inspired by calcium-induced reversible assembly and disassembly of membrane proteins found in nature, here we developed a phosphorylated amphiphile (PA) that contains an oligo(phenylene-ethynylene) unit as a hydrophobic unit and...


Author(s):  
Vivien Yeh ◽  
Boyan B. Bonev

Membranes of cells are active barriers, in which membrane proteins perform essential remodelling, transport and recognition functions that are vital to cells. Membrane proteins are key regulatory components of cells and represent essential targets for the modulation of cell function and pharmacological intervention. However, novel folds, low molarity and the need for lipid membrane support present serious challenges to the characterisation of their structure and interactions. We describe the use of solid state NMR as a versatile and informative approach for membrane and membrane protein studies, which uniquely provides information on structure, interactions and dynamics of membrane proteins. High resolution approaches are discussed in conjunction with applications of NMR methods to studies of membrane lipid and protein structure and interactions. Signal enhancement in high resolution NMR spectra through DNP is discussed as a tool for whole cell and interaction studies.


2014 ◽  
Vol 106 (2) ◽  
pp. 559a
Author(s):  
Mohamed Kreir ◽  
Matthias Beckler ◽  
Astrid Seifert ◽  
Conrad Weichbrodt ◽  
Gerhard Baaken ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document