scholarly journals Feedforward mechanisms of masking in mouse V1

2021 ◽  
Author(s):  
Dylan Barbera ◽  
Nicholas J. Priebe ◽  
Lindsey L. Glickfeld

AbstractSensory neurons not only encode stimuli that align with their receptive fields but are also modulated by context. For example, the responses of neurons in mouse primary visual cortex (V1) to gratings of their preferred orientation are modulated by the presence of superimposed orthogonal gratings (“plaids”). The effects of this modulation can be diverse: some neurons exhibit cross-orientation suppression while other neurons have larger responses to a plaid than its components. We investigated whether these diverse forms of masking could be explained by a unified circuit mechanism. We report that the suppression of cortical activity does not alter the effects of masking, ruling out cortical mechanisms. Instead, we demonstrate that the heterogeneity of plaid responses is explained by an interaction between stimulus geometry and orientation tuning. Highly selective neurons uniformly exhibit cross-orientation suppression, whereas in weakly-selective neurons masking depends on the spatial configuration of the stimulus, with effects transitioning systematically between suppression and facilitation. Thus, the diverse responses of mouse V1 neurons emerge as a consequence of the spatial structure of the afferent input to V1, with no need to invoke cortical interactions.

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Jan C. Frankowski ◽  
Andrzej T. Foik ◽  
Alexa Tierno ◽  
Jiana R. Machhor ◽  
David C. Lyon ◽  
...  

AbstractPrimary sensory areas of the mammalian neocortex have a remarkable degree of plasticity, allowing neural circuits to adapt to dynamic environments. However, little is known about the effects of traumatic brain injury on visual circuit function. Here we used anatomy and in vivo electrophysiological recordings in adult mice to quantify neuron responses to visual stimuli two weeks and three months after mild controlled cortical impact injury to primary visual cortex (V1). We found that, although V1 remained largely intact in brain-injured mice, there was ~35% reduction in the number of neurons that affected inhibitory cells more broadly than excitatory neurons. V1 neurons showed dramatically reduced activity, impaired responses to visual stimuli and weaker size selectivity and orientation tuning in vivo. Our results show a single, mild contusion injury produces profound and long-lasting impairments in the way V1 neurons encode visual input. These findings provide initial insight into cortical circuit dysfunction following central visual system neurotrauma.


2000 ◽  
Vol 84 (4) ◽  
pp. 2048-2062 ◽  
Author(s):  
Mitesh K. Kapadia ◽  
Gerald Westheimer ◽  
Charles D. Gilbert

To examine the role of primary visual cortex in visuospatial integration, we studied the spatial arrangement of contextual interactions in the response properties of neurons in primary visual cortex of alert monkeys and in human perception. We found a spatial segregation of opposing contextual interactions. At the level of cortical neurons, excitatory interactions were located along the ends of receptive fields, while inhibitory interactions were strongest along the orthogonal axis. Parallel psychophysical studies in human observers showed opposing contextual interactions surrounding a target line with a similar spatial distribution. The results suggest that V1 neurons can participate in multiple perceptual processes via spatially segregated and functionally distinct components of their receptive fields.


2021 ◽  
Author(s):  
Yulia Revina ◽  
Lucy S Petro ◽  
Cristina B Denk-Florea ◽  
Isa S Rao ◽  
Lars Muckli

The majority of synaptic inputs to the primary visual cortex (V1) are non-feedforward, instead originating from local and anatomical feedback connections. Animal electrophysiology experiments show that feedback signals originating from higher visual areas with larger receptive fields modulate the surround receptive fields of V1 neurons. Theories of cortical processing propose various roles for feedback and feedforward processing, but systematically investigating their independent contributions to cortical processing is challenging because feedback and feedforward processes coexist even in single neurons. Capitalising on the larger receptive fields of higher visual areas compared to primary visual cortex (V1), we used an occlusion paradigm that isolates top-down influences from feedforward processing. We utilised functional magnetic resonance imaging (fMRI) and multi-voxel pattern analysis methods in humans viewing natural scene images. We parametrically measured how the availability of contextual information determines the presence of detectable feedback information in non-stimulated V1, and how feedback information interacts with feedforward processing. We show that increasing the visibility of the contextual surround increases scene-specific feedback information, and that this contextual feedback enhances feedforward information. Our findings are in line with theories that cortical feedback signals transmit internal models of predicted inputs.


2021 ◽  
Vol 15 ◽  
Author(s):  
Tushar Chauhan ◽  
Timothée Masquelier ◽  
Benoit R. Cottereau

The early visual cortex is the site of crucial pre-processing for more complex, biologically relevant computations that drive perception and, ultimately, behaviour. This pre-processing is often studied under the assumption that neural populations are optimised for the most efficient (in terms of energy, information, spikes, etc.) representation of natural statistics. Normative models such as Independent Component Analysis (ICA) and Sparse Coding (SC) consider the phenomenon as a generative, minimisation problem which they assume the early cortical populations have evolved to solve. However, measurements in monkey and cat suggest that receptive fields (RFs) in the primary visual cortex are often noisy, blobby, and symmetrical, making them sub-optimal for operations such as edge-detection. We propose that this suboptimality occurs because the RFs do not emerge through a global minimisation of generative error, but through locally operating biological mechanisms such as spike-timing dependent plasticity (STDP). Using a network endowed with an abstract, rank-based STDP rule, we show that the shape and orientation tuning of the converged units are remarkably close to single-cell measurements in the macaque primary visual cortex. We quantify this similarity using physiological parameters (frequency-normalised spread vectors), information theoretic measures [Kullback–Leibler (KL) divergence and Gini index], as well as simulations of a typical electrophysiology experiment designed to estimate orientation tuning curves. Taken together, our results suggest that compared to purely generative schemes, process-based biophysical models may offer a better description of the suboptimality observed in the early visual cortex.


2019 ◽  
Author(s):  
Jun Zhuang ◽  
Rylan S Larsen ◽  
Kevin T Takasaki ◽  
Naveen D Ouellette ◽  
Tanya L Daigle ◽  
...  

Location-sensitive and motion-sensitive units are the two major functional types of feedforward projections from lateral genicular nucleus (LGN) to primary visual cortex (V1) in mouse. The distribution of these inputs in cortical depth remains under debate. By measuring the calcium activities of LGN axons in V1 of awake mice, we systematically mapped their functional and structural properties. Although both types distributed evenly across cortical depth, we found that they differ significantly across multiple modalities. Compared to the location-sensitive axons, which possessed confined spatial receptive fields, the motion-sensitive axons lacked spatial receptive fields, preferred lower temporal, higher spatial frequencies and had wider horizontal bouton spread. Furthermore, the motion-sensitive axons showed a strong depth-dependent motion direction bias while the location-sensitive axons showed a depth-independent OFF dominance. Overall, our results suggest a new model of receptive biases and laminar structure of thalamic inputs to V1.


2002 ◽  
Vol 88 (1) ◽  
pp. 455-463 ◽  
Author(s):  
Dario L. Ringach

I present measurements of the spatial structure of simple-cell receptive fields in macaque primary visual cortex (area V1). Similar to previous findings in cat area 17, the spatial profile of simple-cell receptive fields in the macaque is well described by two-dimensional Gabor functions. A population analysis reveals that the distribution of spatial profiles in primary visual cortex lies approximately on a one-parameter family of filter shapes. Surprisingly, the receptive fields cluster into even- and odd-symmetry classes with a tendency for neurons that are well tuned in orientation and spatial frequency to have odd-symmetric receptive fields. The filter shapes predicted by two recent theories of simple-cell receptive field function, independent component analysis and sparse coding, are compared with the data. Both theories predict receptive fields with a larger number of subfields than observed in the experimental data. In addition, these theories do not generate receptive fields that are broadly tuned in orientation and low-pass in spatial frequency, which are commonly seen in monkey V1. The implications of these results for our understanding of image coding and representation in primary visual cortex are discussed.


2016 ◽  
Author(s):  
Ovidiu Jurjut ◽  
Petya Georgieva ◽  
Laura Busse ◽  
Steffen Katzner

AbstractA fundamental property of visual cortex is to enhance the representation of those stimuli that are relevant for behavior, but it remains poorly understood how such enhanced representations arise during learning. Using classical conditioning in mice, we show that orientation discrimination is learned in a sequence of distinct behavioral stages, in which animals first rely on stimulus appearance before exploiting its orientation to guide behavior. After confirming that orientation discrimination under classical conditioning requires primary visual cortex (V1), we measured, during learning, response properties of V1 neurons. Learning improved neural discriminability, sharpened orientation tuning and led to higher contrast sensitivity. Remarkably, these learning-related improvements in the V1 representation were fully expressed before successful orientation discrimination was evident in the animals’ behavior. We propose that V1 plays a key role early in discrimination learning to enhance behaviorally relevant sensory information.


Sign in / Sign up

Export Citation Format

Share Document