scholarly journals Spatial Distribution of Contextual Interactions in Primary Visual Cortex and in Visual Perception

2000 ◽  
Vol 84 (4) ◽  
pp. 2048-2062 ◽  
Author(s):  
Mitesh K. Kapadia ◽  
Gerald Westheimer ◽  
Charles D. Gilbert

To examine the role of primary visual cortex in visuospatial integration, we studied the spatial arrangement of contextual interactions in the response properties of neurons in primary visual cortex of alert monkeys and in human perception. We found a spatial segregation of opposing contextual interactions. At the level of cortical neurons, excitatory interactions were located along the ends of receptive fields, while inhibitory interactions were strongest along the orthogonal axis. Parallel psychophysical studies in human observers showed opposing contextual interactions surrounding a target line with a similar spatial distribution. The results suggest that V1 neurons can participate in multiple perceptual processes via spatially segregated and functionally distinct components of their receptive fields.

2021 ◽  
Author(s):  
Yulia Revina ◽  
Lucy S Petro ◽  
Cristina B Denk-Florea ◽  
Isa S Rao ◽  
Lars Muckli

The majority of synaptic inputs to the primary visual cortex (V1) are non-feedforward, instead originating from local and anatomical feedback connections. Animal electrophysiology experiments show that feedback signals originating from higher visual areas with larger receptive fields modulate the surround receptive fields of V1 neurons. Theories of cortical processing propose various roles for feedback and feedforward processing, but systematically investigating their independent contributions to cortical processing is challenging because feedback and feedforward processes coexist even in single neurons. Capitalising on the larger receptive fields of higher visual areas compared to primary visual cortex (V1), we used an occlusion paradigm that isolates top-down influences from feedforward processing. We utilised functional magnetic resonance imaging (fMRI) and multi-voxel pattern analysis methods in humans viewing natural scene images. We parametrically measured how the availability of contextual information determines the presence of detectable feedback information in non-stimulated V1, and how feedback information interacts with feedforward processing. We show that increasing the visibility of the contextual surround increases scene-specific feedback information, and that this contextual feedback enhances feedforward information. Our findings are in line with theories that cortical feedback signals transmit internal models of predicted inputs.


2021 ◽  
Author(s):  
Dylan Barbera ◽  
Nicholas J. Priebe ◽  
Lindsey L. Glickfeld

AbstractSensory neurons not only encode stimuli that align with their receptive fields but are also modulated by context. For example, the responses of neurons in mouse primary visual cortex (V1) to gratings of their preferred orientation are modulated by the presence of superimposed orthogonal gratings (“plaids”). The effects of this modulation can be diverse: some neurons exhibit cross-orientation suppression while other neurons have larger responses to a plaid than its components. We investigated whether these diverse forms of masking could be explained by a unified circuit mechanism. We report that the suppression of cortical activity does not alter the effects of masking, ruling out cortical mechanisms. Instead, we demonstrate that the heterogeneity of plaid responses is explained by an interaction between stimulus geometry and orientation tuning. Highly selective neurons uniformly exhibit cross-orientation suppression, whereas in weakly-selective neurons masking depends on the spatial configuration of the stimulus, with effects transitioning systematically between suppression and facilitation. Thus, the diverse responses of mouse V1 neurons emerge as a consequence of the spatial structure of the afferent input to V1, with no need to invoke cortical interactions.


2018 ◽  
Vol 120 (1) ◽  
pp. 274-280 ◽  
Author(s):  
Luis O. Jimenez ◽  
Elaine Tring ◽  
Joshua T. Trachtenberg ◽  
Dario L. Ringach

Neurons in primary visual cortex are selective to the orientation and spatial frequency of sinusoidal gratings. In the classic model of cortical organization, a population of neurons responding to the same region of the visual field but tuned to all possible feature combinations provides a detailed representation of the local image. Such a functional module is assumed to be replicated across primary visual cortex to provide a uniform representation of the image across the entire visual field. In contrast, it has been hypothesized that the tiling properties of ON- and OFF-center receptive fields in the retina, largely mirrored in the geniculate, may constrain cortical tuning at each location in the visual field. This model predicts the existence of local biases in tuning that vary across the visual field and would prevent the cortex from developing a uniform, modular representation as postulated by the classic model. Here, we confirm the existence of local tuning biases in the primary visual cortex of the mouse, lending support to the notion that cortical tuning may be constrained by signals from the periphery. NEW & NOTEWORTHY Populations of cortical neurons responding to the same part of the visual field are shown to have similar tuning. Such local biases are consistent with the hypothesis that cortical tuning, in mouse primary visual cortex, is constrained by signals from the periphery.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Brittany C. Clawson ◽  
Emily J. Pickup ◽  
Amy Ensing ◽  
Laura Geneseo ◽  
James Shaver ◽  
...  

AbstractLearning-activated engram neurons play a critical role in memory recall. An untested hypothesis is that these same neurons play an instructive role in offline memory consolidation. Here we show that a visually-cued fear memory is consolidated during post-conditioning sleep in mice. We then use TRAP (targeted recombination in active populations) to genetically label or optogenetically manipulate primary visual cortex (V1) neurons responsive to the visual cue. Following fear conditioning, mice respond to activation of this visual engram population in a manner similar to visual presentation of fear cues. Cue-responsive neurons are selectively reactivated in V1 during post-conditioning sleep. Mimicking visual engram reactivation optogenetically leads to increased representation of the visual cue in V1. Optogenetic inhibition of the engram population during post-conditioning sleep disrupts consolidation of fear memory. We conclude that selective sleep-associated reactivation of learning-activated sensory populations serves as a necessary instructive mechanism for memory consolidation.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Caitlin Siu ◽  
Justin Balsor ◽  
Sam Merlin ◽  
Frederick Federer ◽  
Alessandra Angelucci

AbstractThe mammalian sensory neocortex consists of hierarchically organized areas reciprocally connected via feedforward (FF) and feedback (FB) circuits. Several theories of hierarchical computation ascribe the bulk of the computational work of the cortex to looped FF-FB circuits between pairs of cortical areas. However, whether such corticocortical loops exist remains unclear. In higher mammals, individual FF-projection neurons send afferents almost exclusively to a single higher-level area. However, it is unclear whether FB-projection neurons show similar area-specificity, and whether they influence FF-projection neurons directly or indirectly. Using viral-mediated monosynaptic circuit tracing in macaque primary visual cortex (V1), we show that V1 neurons sending FF projections to area V2 receive monosynaptic FB inputs from V2, but not other V1-projecting areas. We also find monosynaptic FB-to-FB neuron contacts as a second motif of FB connectivity. Our results support the existence of FF-FB loops in primate cortex, and suggest that FB can rapidly and selectively influence the activity of incoming FF signals.


2000 ◽  
Vol 17 (1) ◽  
pp. 71-76 ◽  
Author(s):  
JOHN D. ALLISON ◽  
PETER MELZER ◽  
YUCHUAN DING ◽  
A.B. BONDS ◽  
VIVIEN A. CASAGRANDE

How neurons in the primary visual cortex (V1) of primates process parallel inputs from the magnocellular (M) and parvocellular (P) layers of the lateral geniculate nucleus (LGN) is not completely understood. To investigate whether signals from the two pathways are integrated in the cortex, we recorded contrast-response functions (CRFs) from 20 bush baby V1 neurons before, during, and after pharmacologically inactivating neural activity in either the contralateral LGN M or P layers. Inactivating the M layer reduced the responses of V1 neurons (n = 10) to all stimulus contrasts and significantly elevated (t = 8.15, P < 0.01) their average contrast threshold from 8.04 (± 4.1)% contrast to 22.46 (± 6.28)% contrast. M layer inactivation also significantly reduced (t = 4.06, P < 0.01) the average peak response amplitude. Inactivating the P layer did not elevate the average contrast threshold of V1 neurons (n = 10), but significantly reduced (t = 4.34, P < 0.01) their average peak response amplitude. These data demonstrate that input from the M pathway can account for the responses of V1 neurons to low stimulus contrasts and also contributes to responses to high stimulus contrasts. The P pathway appears to influence mainly the responses of V1 neurons to high stimulus contrasts. None of the cells in our sample, which included cells in all output layers of V1, appeared to receive input from only one pathway. These findings support the view that many V1 neurons integrate information about stimulus contrast carried by the LGN M and P pathways.


2015 ◽  
Vol 114 (6) ◽  
pp. 3076-3096 ◽  
Author(s):  
Ryan M. Peters ◽  
Phillip Staibano ◽  
Daniel Goldreich

The ability to resolve the orientation of edges is crucial to daily tactile and sensorimotor function, yet the means by which edge perception occurs is not well understood. Primate cortical area 3b neurons have diverse receptive field (RF) spatial structures that may participate in edge orientation perception. We evaluated five candidate RF models for macaque area 3b neurons, previously recorded while an oriented bar contacted the monkey's fingertip. We used a Bayesian classifier to assign each neuron a best-fit RF structure. We generated predictions for human performance by implementing an ideal observer that optimally decoded stimulus-evoked spike counts in the model neurons. The ideal observer predicted a saturating reduction in bar orientation discrimination threshold with increasing bar length. We tested 24 humans on an automated, precision-controlled bar orientation discrimination task and observed performance consistent with that predicted. We next queried the ideal observer to discover the RF structure and number of cortical neurons that best matched each participant's performance. Human perception was matched with a median of 24 model neurons firing throughout a 1-s period. The 10 lowest-performing participants were fit with RFs lacking inhibitory sidebands, whereas 12 of the 14 higher-performing participants were fit with RFs containing inhibitory sidebands. Participants whose discrimination improved as bar length increased to 10 mm were fit with longer RFs; those who performed well on the 2-mm bar, with narrower RFs. These results suggest plausible RF features and computational strategies underlying tactile spatial perception and may have implications for perceptual learning.


2000 ◽  
Vol 83 (2) ◽  
pp. 1019-1030 ◽  
Author(s):  
Valentin Dragoi ◽  
Mriganka Sur

A fundamental feature of neural circuitry in the primary visual cortex (V1) is the existence of recurrent excitatory connections between spiny neurons, recurrent inhibitory connections between smooth neurons, and local connections between excitatory and inhibitory neurons. We modeled the dynamic behavior of intermixed excitatory and inhibitory populations of cells in V1 that receive input from the classical receptive field (the receptive field center) through feedforward thalamocortical afferents, as well as input from outside the classical receptive field (the receptive field surround) via long-range intracortical connections. A counterintuitive result is that the response of oriented cells can be facilitated beyond optimal levels when the surround stimulus is cross-oriented with respect to the center and suppressed when the surround stimulus is iso-oriented. This effect is primarily due to changes in recurrent inhibition within a local circuit. Cross-oriented surround stimulation leads to a reduction of presynaptic inhibition and a supraoptimal response, whereas iso-oriented surround stimulation has the opposite effect. This mechanism is used to explain the orientation and contrast dependence of contextual interactions in primary visual cortex: responses to a center stimulus can be both strongly suppressed and supraoptimally facilitated as a function of surround orientation, and these effects diminish as stimulus contrast decreases.


Sign in / Sign up

Export Citation Format

Share Document