scholarly journals Hippocampal gamma-band oscillopathy in a mouse model of Fragile X Syndrome

2021 ◽  
Author(s):  
Evangelia Pollali ◽  
Jan-Oliver Hollnagel ◽  
Guersel Caliskan

Fragile X syndrome (FXS) is the most common inherited form of intellectual disability arising from the loss of fragile X mental retardation protein (FMRP), a protein that plays a central role in neuronal function and plasticity. FXS patients show sensory hypersensitivity, hyperarousal and hippocampus-dependent learning deficits that can be recapitulated in the FMR1 KO mice. Enhanced metabotropic glutamate receptor (mGluR) signaling and muscarinic acetylcholine receptor (mAChR) signaling in the FMR1 KO mouse are implicated as the primary causes of the disease pathogenesis. Furthermore, glutamatergic kainate receptor (KAR) function is reduced in the cortex of the FMR1 KO mice. Of note, activation of these signaling pathways leads to slow gamma-range oscillations in the hippocampus in vitro and abnormal gamma oscillations have been reported in FMR1 KO mice and patients with FXS. Thus, we hypothesized that aberrant activation of these receptors leads to the observed gamma oscillopathy. We recorded gamma oscillations induced by either cholinergic agonist carbachol (CCh), mGluR1/5 agonist Dihydroxyphenylglycine (DHPG) or ionotropic glutamatergic agonist KA from the hippocampal CA3 in WT and FMR1 KO mice in vitro. We show a specific increase in the power of DHPG- and CCh-induced gamma oscillations and reduction in the synchronicity of gamma oscillations induced by KA. We further elucidate an aberrant spiking activity during CCh-induced and kainate-induced gamma oscillations which may underlie the altered gamma oscillation synchronization in the FMR1 KO mice. Last, we also noted a reduced incidence of spontaneously-occurring hippocampal sharp wave-ripple events. Our study provides further evidence for aberrant hippocampal rhythms in the FMR1 KO mice and identifies potential signaling pathways underlying gamma band oscillopathy in FXS.

2021 ◽  
Author(s):  
Marine A Krzisch ◽  
Hao A Wu ◽  
Bingbing Yuan ◽  
Troy W. Whitfield ◽  
X. Shawn Liu ◽  
...  

Abnormal neuronal development in Fragile X syndrome (FXS) is poorly understood. Data on FXS patients remain scarce and FXS animal models have failed to yield successful therapies. In vitro models do not fully recapitulate the morphology and function of human neurons. Here, we co-injected neural precursor cells (NPCs) from FXS patient-derived and corrected isogenic control induced pluripotent stem cells into the brain of neonatal immune-deprived mice. The transplanted cells populated the brain and a proportion differentiated into neurons and glial cells. Single-cell RNA sequencing of transplanted cells revealed upregulated excitatory synaptic transmission and neuronal differentiation pathways in FXS neurons. Immunofluorescence analyses showed accelerated maturation of FXS neurons after an initial delay. Additionally, increased percentages of Arc- and Egr1-positive FXS neurons and wider dendritic protrusions of mature FXS striatal medium spiny neurons pointed to an increase in synaptic activity and synaptic strength as compared to control. This transplantation approach provides new insights into the alterations of neuronal development in FXS by facilitating physiological development of cells in a 3D context, and could be used to test new therapeutic compounds correcting neuronal development defects in FXS.


2011 ◽  
Vol 106 (5) ◽  
pp. 2264-2272 ◽  
Author(s):  
Scott M. Paluszkiewicz ◽  
Jose Luis Olmos-Serrano ◽  
Joshua G. Corbin ◽  
Molly M. Huntsman

Fragile X syndrome (FXS) is a neurodevelopmental disorder characterized by severe cognitive impairments, sensory hypersensitivity, and comorbidities with autism and epilepsy. Fmr1 knockout (KO) mouse models of FXS exhibit alterations in excitatory and inhibitory neurotransmission, but it is largely unknown how aberrant function of specific neuronal subtypes contributes to these deficits. In this study we show specific inhibitory circuit dysfunction in layer II/III of somatosensory cortex of Fmr1 KO mice. We demonstrate reduced activation of somatostatin-expressing low-threshold-spiking (LTS) interneurons in response to the group I metabotropic glutamate receptor (mGluR) agonist 3,5-dihydroxyphenylglycine (DHPG) in Fmr1 KO mice, resulting in impaired synaptic inhibition. Paired recordings from pyramidal neurons revealed reductions in synchronized synaptic inhibition and coordinated spike synchrony in response to DHPG, indicating a weakened LTS interneuron network in Fmr1 KO mice. Together, these findings reveal a functional defect in a single subtype of cortical interneuron in Fmr1 KO mice. This defect is linked to altered activity of the cortical network in line with the FXS phenotype.


2015 ◽  
Vol 20 ◽  
pp. 124-134 ◽  
Author(s):  
Sebastian H Scharf ◽  
Georg Jaeschke ◽  
Joseph G Wettstein ◽  
Lothar Lindemann

2006 ◽  
Vol 18 (11) ◽  
pp. 1850-1862 ◽  
Author(s):  
Juan R. Vidal ◽  
Maximilien Chaumon ◽  
J. Kevin O'Regan ◽  
Catherine Tallon-Baudry

Neural oscillatory synchrony could implement grouping processes, act as an attentional filter, or foster the storage of information in short-term memory. Do these findings indicate that oscillatory synchrony is an unspecific epiphenomenon occurring in any demanding task, or that oscillatory synchrony is a fundamental mechanism involved whenever neural cooperation is requested? If the latter hypothesis is true, then oscillatory synchrony should be specific, with distinct visual processes eliciting different types of oscillations. We recorded magnetoencephalogram (MEG) signals while manipulating the grouping properties of a visual display on the one hand, and the focusing of attention to memorize part of this display on the other hand. Grouping-related gamma oscillations were present in all conditions but modulated by the grouping properties of the stimulus (one or two groups) in the high gamma-band (70–120 Hz) at central occipital locations. Attention-related gamma oscillations appeared as an additional component whenever attentional focusing was requested in the low gamma-band (44–66 Hz) at parietal locations. Our results thus reveal the existence of a functional specialization in the gamma range, with grouping-related oscillations showing up at higher frequencies than attention-related oscillations. The pattern of oscillatory synchrony is thus specific of the visual process it is associated with. Our results further suggest that both grouping processes and focused attention rely on a common implementation process, namely, gamma-band oscillatory synchrony, a finding that could account for the fact that coherent percepts are more likely to catch attention than incoherent ones.


2021 ◽  
Author(s):  
Alexander Zhigalov ◽  
Katharina Duecker ◽  
Ole Jensen

AbstractThe aim of this study is to uncover the network dynamics of the human visual cortex by driving it with a broadband random visual flicker. We here applied a broadband flicker (1–720 Hz) while measuring the MEG and then estimated the temporal response function (TRF) between the visual input and the MEG response. This TRF revealed an early response in the 40–60 Hz gamma range as well as in the 8–12 Hz alpha band. While the gamma band response is novel, the latter has been termed the alpha band perceptual echo. The gamma echo preceded the alpha perceptual echo. The dominant frequency of the gamma echo was subject-specific thereby reflecting the individual dynamical properties of the early visual cortex. To understand the neuronal mechanisms generating the gamma echo, we implemented a pyramidal-interneuron gamma (PING) model that produces gamma oscillations in the presence of constant input currents. Applying a broadband input current mimicking the visual stimulation allowed us to estimate TRF between the input current and the population response (akin to the local field potentials). The TRF revealed a gamma echo that was similar to the one we observed in the MEG data. Our results suggest that the visual gamma echo can be explained by the dynamics of the PING model even in the absence of sustained gamma oscillations.


Sign in / Sign up

Export Citation Format

Share Document